BLOQUE VI. ALMACENAMIENTO DE INFORMACION.

AJAX con JSON

JSON (JavaScript Object Notation) es un formato basado en texto para representar
datos estructurados en la sintaxis de objetos de JavaScript. Es comunmente utilizado
para transmitir datos en aplicaciones web (por ejemplo: enviar algunos datos desde el
servidor al cliente, asi estos datos pueden ser mostrados en pdginas web, o viceversa)

1. OBJETOS JSON BIEN FORMADOS

Los objetos JSON son cadenas de texto, aunque debe ser convertido a un objeto nativo
de JavaScript para acceder a sus datos. Es posible incluir los mismos tipos de datos
basicos dentro de un JSON que en un objeto estandar de JavaScript (cadena, nimeros,
arrays, booleanos y otros literales de objeto). Esto permite construir una jerarquia de
datos.

Un objeto JSON puede ser almacenado en su Nota: Convertir una cadena a un
propio archivo, que es basicamente un archivo objeto nativo se denomina parsing,
de texto con una extension .json, y una MIME | njentras que convertir un objeto
type de application/json. nativo a una cadena para que pueda
ser transferido se denomina
stringification.

Debemos considerar algunas cosas para tener un objeto JSON bien formado:

e Se requiere usar comillas dobles para las cadenas y los nombres de
propiedades. Las comillas simples no son validas.

e Una coma o dos puntos mal ubicados pueden producir que un archivo JSON no
funcione. Es posible validar JSON utilizando una aplicacion como JSONLint.

e A diferencia del codigo JavaScript en que las propiedades del objeto pueden no
estar entre comillas, en JSON, sélo las cadenas entre comillas pueden ser
utilizadas como propiedades.

Podemos wvalidar un documento JSON utilizando un validador como:
https://jsonlint.com/

https://jsonlint.com/

1.1. JavaScript Object Notation (JSON)

JSON es un formato basado en texto para representar datos estructurados en la
sintaxis de objetos de JavaScript. Es comUnmente utilizado para transmitir datos en
aplicaciones web (por ejemplo: enviar algunos datos desde el servidor al cliente, asi
estos datos pueden ser mostrados en pdginas web, o viceversa)

Los objetos JSON son cadenas de texto, aunque debe ser convertido a un objeto nativo
de JavaScript para acceder a sus datos. JavaScript posee un objeto global JSON que
tiene los métodos disponibles para la conversidn.

1.2 JSON y XML

Lo primero que se debe decir es que ambos formatos se pueden utilizar para enviar y
recibir informacion desde y hacia un servidor web (bases de datos, entre sistemas
heterogéneos, etc). Por lo tanto, podemos decir que son equivalentes en cuanto a esta
utilidad.

Ambos son autodesriptivos, jerarquicos y pueden ser utilizados por multitud de
lenguajes de programacion. Pero también hay una serie de diferencias entre ambos:
JSON no utiliza etiquetas finalizadoras, produce documentos mas cortos, son mas
rapidos de leer y escribir, y se pueden utilizar arrays.

Resumiendo, podemos decir que las principales diferencia son que XML tiene que ser
analizado con un analizador XML mientras que JSON se puede analizar mediante una
funcidn estandar de JavaScript. Eso lleva a que XML es mucho mas dificil de analizar
que JSON.

Veamos un ejemplo en ambos formatos (equivalentes):

Ejemplo JSON
{"employees":[
{ "firstName":"John", "lastName":"Doe" },
{ "firstName":"Anna", "lastName":"Smith" },
{ "firstName":"Peter", "lastName":"Jones" }

1}

Ejemplo XML
<employees>
<employee>
<firstName>John</firstName> <lastName>Doe</lastName>
</employee>
<employee>
<firstName>Anna</firstName> <lastName>Smith</lastName>
</employee>
<employee>
<firstName>Peter</firstName> <lastName>Jones</lastName>
</employee>
</employees>

1.3. Formato JSON

JSON es un formato ligero de intercambio de datos, independiente de los lenguajes de
programacion y con la particularidad de ser reconocido de forma nativa por JavaScript.
Se utiliza de manera frecuente en las aplicaciones de intercambio de datos cliente-
servidor como alternativa a XML. Con la ventaja de que la codificacion de la
informacion en el servidor es sencilla de realizar y en el lado del cliente no es necesario
recurrir a un parser DOM.

Vamos a ver un ejemplo:

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Ejemplo JSON_1</title>

</head>

<body>
<h1>Ejemplo 1 formato JSON</h1>

<script type="text/javascript">

/* Definicidén de objets JSON */
var alumnol = {
codigo: "Vveel",
nombre: "Antonio Flores",
nota_media: 9
}s
var alumno2 = {
codigo: "Vee2x",
nombre: "Laura Torralba",
nota_media: 7
¥
var alumno3 = {
codigo: "Vee3",
nombre: "Joaquin Prieto",
nota_media: 3

}s

/* Mostrar las propiedades de los objetos */

document.write(alumnol.nombre + -> " 4+ alumnol.nota_media + "
");
document.write(alumno2.nombre + -> " + alumno2.nota_media + "
");
document.write(alumno3.nombre + " -> " + alumno3.nota_media + "
");

/* Modification de la propiedad nota_media del objeto alumnol */
alumnol.nota_media = 6;

/* Mostrar las propiedades del objeto alumnol */
document.write("<hr />");
document.write(alumnol.nombre +

" -> " 4+ alumnol.nota_media+ "
");

Podemos ver cémo se han creado los objetos JSON para los alumnos de la manera

var alumnol = {
codigo: "veel",
nombre: "Antonio Flores",
nota_media: 9

s

Al fin y al cabo, creamos objetos. De la misma manera que para acceder a su
informacion, se trata de forma similar a la del resto de objetos:

document.write(alumnol.nombre + -> + alumnol.nota_media +
"<br‘/>");

alumnol.nota_media = 6;

También, seria posible acceder a la informacion de forma asociativa:

document.write(alumnol["nombre"] + " -> " 4 alumnol["nota_media"] +"
");

Es posible la creacidn de objetos compuestos. Afiade el siguiente cddigo después de la
definicion de los 3 objetos de los alumnos:

/* Definicidn de un objeto composite */
var alumnosGrupo = {
grupoAlul: alumnol,
grupoAlu2: alumno2

s

Y para mostrar la informacioén, afiade antes de </script>:

/* Mostrar la propiedad nota_media del objeto

alumno2 incluido en el objeto alumnosGrupo */
document.write("<hr />");
document.write("Mostrar el objeto alumnosGrupo:" + "
");

document.write(alumnosGrupo.grupoAlu2.nombre + -> "+
alumnosGrupo.grupoAlu2.nota_media + "
");
document.write(alumnosGrupo["grupoAlu2"]["nombre"] +

alumnosGrupo["grupoAlu2"]["nota_media"] + "
");

-> "+

Observa las dos formas equivalentes de acceder a la informacién que se han utilizado.

Para terminar el ejemplo, vamos a construir objetos JSON a partir de tablas. Ahade el
siguiente codigo al final del script:

/* Definicidén de 2 tablas (nombres y notas) */
var nombres = ["Maria Beltran", "Jose Manuel Marin"];
var notas = [9, 5];

/* Definicidén de un objeto JSON basado en las tablas */
var alumnos = {

nom: nombres,

punt: notas

}s

/* Mostrar las propiedades del segundo alumno */

document.write("<hr />");

document.write("Visualizacién (utilizando las tablas) de las
propiedades del segundo alumno:");

document.write("
");

document.write(alumnos.nom[1] +

-> " + alumnos.punt[1]);

Podemos observar como se ha credo dos tablas con los datos y después se han
agrupado en un objeto JSON con las propiedades nom y punt, que son propiedades
compuestas basadas en las tablas.

La notacidn es muy intuitiva, basta con indicar el nombre del objeto JSON como un
prefijo y después con un punto indicar el nombre de la tabla y el rango del valor entre

[l.

El resultado final quedaria asi:

Ejemplo 1 formato JSON

Antonio Flores -> 9
Laura Torralba -> 7
Joaquin Prieto -> 3

Antonio Flores -> 6

Mostrar el objeto alumnosGrupo:
Laura Torralba -> 7
Laura Torralba -> 7

Visualizacion (utilizando las tablas) de las propiedades del segundo alumno:
Jose Manuel Marin -> 5

2. LECTURA DE UN ARCHIVO JSON

Vamos a partir del ejemplo del tema anterior (alumnos) y en un archivo de texto
llamado alumnos.json ponemos los datos:

{
"alumnol": {
"codigo": "Vveel",
"nombre": "Antonio Flores",
"nota_media": 9
}s
"alumno2": {
"codigo": "Ve02",
"nombre": "Laura Torralba",
"nota_media": 7
}s
"alumno3": {
"codigo": "Vee3",
"nombre": "Joaquin Prieto",
"nota_media": 3
}
}

En el apartado body, simplemente creamos un contenedor para los datos y llamamos a
una funcidn ajaxJSON(), la cual leera los datos y los pondra en el div divResultado.

<body>
<h1>Ejemplo 2 formato JSON</hl>

<div id="divResultado"></div> <!-- Capa para mostrar el
resultado -->

<script type="text/javascript">
ajaxJSON(); // Llamada de la funcidén ajaxJSON para
cargar los datos
</script>
</body>

El script ajaxJSON() lo definimos en el encabezado del documento (o en un archivo
externo, por supuesto):

<!DOCTYPE html>
<html>

<head>

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />

<title>Ejemplo JSON_1</title>

<script type="text/javascript">

/* Funcién ajaxJSON */
function ajaxJSON() {

Primero, recogemos el enlace de la capa de visualizacién en una variable:

var resultado = document.getElementById("divResultado");

Abrimos instanciamos un objeto tipo ActiveX o JavaScript que permite obtener datos
en formato JSON.

if (window.XMLHttpRequest) {
//Cdédigo para IE7+, Firefox, Chrome, Opera, Safari
httpRequest = new XMLHttpRequest();

} else {
// Coédigo para IE6, IE5
httpRequest = new ActiveXObject("Microsoft.XMLHTTP");

XMLHttpRequest es un objeto ActiveX o JavaScript que permite obtener datos en formato
XML, JSON, HTML, de texto plano o incluso de tipo file o ftp.

Fue disefiado por Microsoft y adoptado por Mozilla, Apple y Google. Actualmente es un
estandar de la W3C.

Proporciona una forma fécil de obtener informacion de una URL sin tener que recargar la
pagina completa. Una pagina web puede actualizar sdlo una parte de la pagina sin
interrumpir lo que el usuario esta haciendo. XMLHttpRequest es ampliamente usado en la
programacion AJAX.

En los navegadores antiguos, es necesario recurrir a un objeto ActiveX.

ActiveX es un entorno para definir componentes de software reusables de forma
independiente del lenguaje de programacién. Las aplicaciones de software pueden ser
disefiadas por uno o mas de esos componentes.

Fue presentado en 1996 por Microsoft como una evolucidon de sus tecnologias
Component Object Model (COM) y Object Linking and Embedding (OLE) y se usa
generalmente en su sistema operativo Windows, aunque la tecnologia como tal no esta
atada al mismo.

Muchas aplicaciones Microsoft Windows —como puedan ser Internet Explorer,
Microsoft Office, Microsoft Visual Studio, etc — usan controles ActiveX para proveer
sus juegos de funcionalidades y también encapsular su propia funcionalidad como
controles ActiveX que asi pueden ser empotrados en otras aplicaciones. Internet
Explorer también permite empotrar sus propios controles ActiveX en paginas web.

El actual navegador de Microsoft, Microsoft Edge, no soporta esta tecnologia, por lo
gue se recomienda evitar su uso.

AJAX (Asynchronous JavaScript And XML), es una técnica de desarrollo web para crear
aplicaciones interactivas o RIA (Rich Internet Applications). Estas aplicaciones se
ejecutan en el cliente, es decir, en el navegador de los usuarios mientras se mantiene la
comunicacién asincrona con el servidor en segundo plano. De esta forma es posible
realizar cambios sobre las pdaginas sin necesidad de recargarlas, mejorando Ia
interactividad, velocidad y usabilidad en las aplicaciones.

Ajax es una tecnologia asincrona, en el sentido de que los datos adicionales se solicitan
al servidor y se cargan en segundo plano sin interferir con la visualizacidon ni el
comportamiento de la pagina, aunque existe la posibilidad de configurar las peticiones
como sincronas de tal forma que la interactividad de la pdgina se detiene hasta la
espera de la respuesta por parte del servidor.

JavaScript es un lenguaje de programacion (scripting language) en el que normalmente
se efectuan las funciones de llamada de Ajax mientras que el acceso a los datos se
realiza mediante XMLHttpRequest, objeto disponible en los navegadores actuales. En
cualquier caso, no es necesario que el contenido asincrono esté formateado en XML.

Ajax es una técnica valida para multiples plataformas y utilizable en muchos sistemas
operativos y navegadores dado que estda basado en estandares abiertos como
JavaScript y Document Object Model (DOM).

Con la instancia del objeto httpRequest, abrimos el archivo y definimos el tipo de flujo.
Hay que tener en cuenta que el nombre del archivo también se puede sustituir por una
url donde se encuentre el documento.

httpRequest.open("GET", "alumnos.json", true); // true: modo asincrono

/* Definicidén del tipo de flujo */
httpRequest.setRequestHeader("Content-type", "application/json");

@)

o
- URL.

XMLHttpRequest.open inicializa o reinicializa una solicitud. Al menos se deben poner los dos
primeros parametros:

- method. Puede ser:

GET. Se usa para solicitar datos de un recurso especifico, la cadena de consulta
(pares de nombre / wvalor) se envia en la URL de wuna solicitud
(/form.php?namel=valuel&name2=value2). Ademads, se debe tener en cuenta que
las solicitudes pueden almacenarse en caché, permanecen en el historial del
navegador, tienen restricciones de longitud.

POST. se usa para enviar datos a un servidor para crear o actualizar un recurso. Los
datos enviados al servidor se almacenan en el cuerpo de solicitud de la solicitud
HTTP. Las solicitudes no tienen restricciones en la longitud de los datos

PUT. Se usa para enviar datos a un servidor para crear o actualizar un recurso. La
diferencia entre POST y PUT es que las solicitudes PUT son idempotentes. Es decir,
llamar a la misma solicitud PUT varias veces siempre producira el mismo resultado.
Por el contrario, llamar a una solicitud POST repetidamente tiene efectos
secundarios de crear el mismo recurso varias veces.

DELETE. Borra un recurso

- async. Admite los valores true o false. El valor true sirve para una conexidn asincrona y false
para una sincrona.
Preferiblemente es preferible una comunicacién asincrona porque mientras se reciben los
datos, el navegador seguira cargando el resto de componentes, mientras que con una
comunicacion sincrona, se paraliza el navegador hasta que ha terminado de recibir los datos.

- user. Usuario para un proceso de autenticacion.

- password.

En este momento hay que procesar el flujo en el momento que esté disponible.
Cuando esté completado el flujo, se procesara convitiendolo en objetos JavaScript
(esta pesada operacion se puede realizar con un método nativo de JavaScript,
JSON.parse).

Cada uno de los objetos se pasan a un array para que su posterior procesamiento sea
mas comodo. Cada dato recibido es un array que contiene los campos de cada objeto
JSON. y por ultimo se colocan los datos recibidos en el contenedor.

httpRequest.onreadystatechange = function () {

/* Prueba si la consulta ha terminado y estdn en estado OK */
if (httpRequest.readyState == 4 && httpRequest.status == 200) {

/* Conversioén del flujo JSON en objetos Javascript */
var datosJSON = JSON.parse(httpRequest.responseText);

resultado.innerHTML = ; /* Vaciar el contenedor */

/* Recorrido de los objetos Javascript */

for (var objet in datosJSON) {
resultado.innerHTML += datosJSON[objet].nombre +
datosJSON[objet].nota_media + " <hr />";

-> "+

}
}

else resultado.innerHTML ="
<h2>Error: No se ha podido acceder a
la informacidén</h2>";

Se informa al servidor que no le enviamos ninguna informaciodn.

/* Se envia un valor nulo al servidor como respuesta */
httpRequest.send(null);

/* Mensaje mostrado mientras se espera el procesamiento del archivo
alumnos.json */
results.innerHTML = "Espera de procesamiento JSON ...";

Este mensaje normalmente no se vera porque al ser la lectura de un archivo local, la
respuesta suele ser inmediata y sin tiempo de espera.

3. LECTURA DE UN ARCHIVO JSON CON UN SCRIPT SERVIDOR PHP

La principal diferencia entre este caso y el del punto anterior es que el flujo JSON se lee
por una aplicacién del lado del servidor escrita en PHP.

El archivo de datos que contiene las descripciones de los alumnos se mantiene sin
ningln cambio (excepto que se guarda junto con el archivo php en el servidor)

El script del lado del cliente es casi idéntico, solamente cambiamos el origen de los
datos (habria que poner el DNS completo en un caso real):

httpRequest.open("GET", "servidorJSON.php", true);

El archivo php (servidorJSON.php) debe contener la definicién del tipo de flujo
(header), la lectura del archivo JSON vy, por ultimo, se asigna sin ninguna
transformacidn a una variable de texto que se envia a la aplicacidn cliente.

<?php

// Tipo de flujo
header("Content-Type: application/json");

// Lectura del archivo JSON
$alumnosJSON = file get contents("alumnos.json");

// Envio de flujo JSON a la aplicacidn cliente
echo $alumnosJSON;

?>

4. LECTURA DE UNA TABLA MYSQL CON SERVIDOR PHPY FLUJO
JSON

El objetivo principal de cualquier aplicacion real es obtener datos actualizados desde
una base de datos, dicha informacion debe ser accesible desde cualquier lugar que se
soliciten los datos. Pero sin olvidarnos nunca de la seguridad para mantener a salvo la
informacién y que solo sea accesible de la forma que se establezca y los datos que nos
interese presentar a la aplicacion cliente.

Antes de comenzar, creamos una nueva base de datos llamada ‘json’ y una tabla
‘alumnos’ con los campos: ‘codigo’ (Primary Key), ‘nombre’, ‘nota_media’ e
introducimos los datos para poder probar la aplicacion.

El script del lado del cliente es el mismo que en el caso anterior, poniendo el nombre
del archivo php al que pediremos la informacién:

httpRequest.open("GET", "servidorJSON.php", true);

En el archivp servidorJSON.php contendra el siguiente cddigo:

<?php

?>

header("Content-Type: application/json"); // Tipo de flujo

// Definiciodn de la consulta SQL
$consulta_sql = "select * from alumnos;";

// Parametres SGBD MySQL
$servidor_mysql = "localhost:3306";
$usuario_mysql = "usuario";
$password_mysql = "1234";

$bd_mysql = "json";

if (($connexion_mysql = mysqli_connect($servidor_mysql,
$usuario_mysql, $password_mysql, $bd_mysql)) === FALSE)

{
}

else

{

}

echo ;

$resultado = mysqli_query($connexion_mysql, $consulta_sql);
if (mysqli_num_rows($resultado) <1)

{
echo "";

}

else

{
while ($registro=mysqli_fetch_array($resultado,MYSQLI_ASSOC))
¢ $filas[] = $registro;—— Los registros leidos se
} pasan a un array para

que estén todos juntos
// Codificacién en formato JSON
$datosISON = json_encode($filas);
T~ Se codifican en

// Envio del resultado al cliente formato JSON para ser
echo $datosJISON; enviados

}

mysqli_close($connexion_mysql);

El codigo anterior es muy similar al de los ejemplos del tema 5 para acceder a una base
de datos y obtener la informacidn. La diferencia esta en que los registros leidos los
pasamos a una tabla que contendr3 al final todos los datos (Sfilas[])

Por ultimo, se codifican los datos en formato JSON (json_encode(Sfilas)) y se envian
los datos al cliente.

ACLARACIONES DE LA PARTE FINAL DEL BLOQUE Vil

Lo mds importante que se debe tener claro en este tema es la forma en que se procesa la
informacién que parte de una base de datos.

Vamos a seguir el cddigo de json4.html y servidorJSONb.php que se puede descargar y reutilizar.

1. Si observamos el cédigo de servidorJSONb.PHP, podemos darnos cuenta de que lo uUnico
gue cambiard en cualquier proyecto es la consulta SQL y el acceso a la base de datos. El
resto de cddigo servira para casi cualquier proyecto.

Esto es asi porque lo Unico que hace el cédigo es pasar los registros de la consulta a una tabla,
transformarla a formato JSON y enviar ese resultado a la pagina html.

2. En el otro archivo json4.html, tampoco hay que cambiar muchas cosas, solamente la
presentacion de la pagina final y el procesamiento de los datos recibidos.

Por tanto, en la parte del <body>, hacemos la pagina como deseemos presentarla (como en
cualquier proyecto)

En la funcion que recibe el cddigo, lo Unico que debemos cambiar es cdmo presentar los datos
recibidos y dénde colocarlos.

Por ejemplo, en este archivo la informacidn que se pone es el nombre y nota media de los alumnos.
El cddigo sera:

resultado.innerHTML = 5

/* Recorrido de los objetos Javascript */ for (var
objet in datosJSON) {

resultado.innerHTML += datosJSON[objet].nombre + " -> " +
datosJSON[objet].nota_media + " <hr />";

}

Pero si queremos poner los datos dentro de una tabla, lo adaptaremos al siguiente cddigo:

tabla = "<table border=1 cellpadding=10><tr><th>Nombre</th><th>Nota
Media</th></tr>";
/* Recorrido de los objetos Javascript */ for (var
objet in datosJSON) {
tabla += "<tr>";
tabla +="<td>"+datosJSON[objet].nombre+"</td><td>"+
datosJSON[objet].nota_media + " </td>";
tabla += "</tr>";

¥
tabla += "</table>";

resultado.innerHTML=tabla;

La diferencia esta bdsicamente en las etiquetas que afnadimos para dibujar la tabla.

3. Asi que, a la hora de abordar los ejercicios de este tema, hay que crear la base de datos

(no es necesario crear todos los campos, con 4 o 5 de ejemplo es suficiente), adaptar la
consulta del archivo php y adaptar la presentacion en el archivo html.
Tara todo esto, podéis reutilizar los ejemplos que he dejado en el aula virtual.

5. EJERCICIOS

Ejercicio 1. Coches. Imaginemos un concesionario de coches que periédicamente debe
enviar informacion sobre los vehiculos que tiene en oferta a un portal publicitario de
compra-venta de coches. Tenemos la siguiente informaciéon como ejemplo:
<?xml version="1.0" encoding="1S0-8859-1"?>
<oferta>
<vehiculo>
<marca>ford</marca>
<modelo color="gris">focus</modelo>
<motor combustible="gasolina">duratorc 1.4</motor>
<matricula>1234AAA</matricula>
<kilometros>12500</kilometros>
<precio_inicial>12000</precio_inicial>
<precio_oferta>10000</precio_oferta>
<extra valor="250">pintura metalizada</extra>
<foto>11325.jpg</foto>
</vehiculo>
<vehiculo>
<marca>ford</marca>
<modelo color="gris">focus</modelo>
<motor combustible="diesel">duratorc 2.0</motor>
<matricula>1235AAA</matricula>
<kilometros>125000</kilometros>
<precio_inicial>10000</precio_inicial>
<precio_oferta>9000</precio_oferta>
<extra valor="250">pintura metalizada</extra>
<foto>11328.jpg</foto>
</vehiculo>
</oferta>

A partir de dicha informacién, crea una base de datos MYSQL llamada coches, en esa BD
crea una tabla llamada vehiculos e introduce los datos anteriores.

Realiza el codigo php y html para acceder a los datos de la BD y transferirlos en formato
JSON al documento html para poder mostrarlos en forma de tabla.

Ejercicio 2. Cambia la seccion de Consultar ALUMNOS del ejercicio 5 del BLOQUE VI
Acceso MySQL con PHP, para que en vez de que el link de CONSULTAR llame a un PHP,
directamente en la pantalla inicial de LINKS se ponga justo debajo la tabla de resultado del
alumno buscado usando AJAX con un JSON. Debes mostrarlo tal cual lo tenias en la
miniaplicacidn del bloque VI pero esta vez que los datos estén dentro de una LISTA HTML
gue debes crear usando DOM de javascript.

