
Contenido

1.- Acceso a bases de datos desde PHP. ... 1
Características básicas de la utilización de objetos en PHP ..2

Las clases: class ... 2
Utilizar la clase .. 3
La variable $this .. 3
Constructores ... 3

2.- MySQL. .. 5
2.1.- Instalación y configuración. ...5
2.2.- Herramientas de administración. ..6

2.2.1.- mysql y mysqladmin.. 7
2.2.2.- phpMyAdmin. .. 9

3.- Utilización de bases de datos MySQL en PHP.. 15
3.1.- Extensión MySQLi. ...15

3.1.1.- Establecimiento de conexiones. ... 16
3.1.2.- Ejecución de consultas. ... 17
3.1.3.- Transacciones. ... 18
3.1.4.- Obtención y utilización de conjuntos de resultados. .. 20
3.1.5.- Consultas preparadas. .. 22

3.2.- PHP Data Objects (PDO). ...25
3.2.1.- Establecimiento de conexiones. ... 26
3.2.2.- Ejecución de consultas. ... 27
3.2.3.- Obtención y utilización de conjuntos de resultados. .. 28
3.2.4.- Consultas preparadas. .. 30

4.- Errores y manejo de excepciones. ... 33
4.1.- Excepciones. ..34

TEMA 3

Trabajar con bases de datos en PHP Tema 3

- 1 -

Trabajar con bases de datos en PHP.

Caso práctico
Una de las tareas prioritarias que tienen que abordar en el nuevo proyecto de BK Programación es el
almacenamiento de la información que utilizará la aplicación web, y el método de acceso que se
utilizará para manejarla desde PHP.
En una reunión de trabajo, Esteban les informa que para la gestión de la empresa están utilizando
una aplicación de código libre que almacena los datos en un servidor MySQL. Afortunadamente, este
servidor es el más utilizado en la programación con lenguaje PHP, por lo que no tendrán problemas
en integrar la nueva aplicación web con la ya existente. Solo necesitan conocer la estructura de los
datos que se almacenan, y ver qué métodos puede usar para manejar la información.

1.- Acceso a bases de datos desde PHP.

Caso práctico

Carlos es nuevo en el mundo de la programación web. Además, apenas ha trabajado con bases
de datos, por lo que se asombra de la gran diversidad de opciones que existen en PHP para trabajar
con datos almacenados en servidores de distintos tipos.
Algunos de los gestores sobre los que lee mientras revisa la documentación de PHP los conoce, otros
simplemente le suenan, pero hay muchos de los que ni siquiera conocía su existencia. Sabe que
debe centrarse en el servidor MySQL, que es el que usarán para desarrollar la aplicación, pero aun
así el volumen de información disponible es tan grande que le cuesta decidirse por dónde empezar.

Una de las aplicaciones más frecuentes de PHP es generar un interface web para acceder y gestionar
la información almacenada en una base de datos. Usando PHP podemos mostrar en una página web
información extraída de la base de datos, o enviar sentencias al gestor de la base de datos para que
elimine o actualice algunos registros.

PHP soporta más de 15 sistemas gestores de bases de datos: SQLite, Oracle, SQL Server, PostgreSQL,
IBM DB2, MySQL, etc. Hasta la versión 5 de PHP, el acceso a las bases de datos se hacía
principalmente utilizando extensiones específicas para cada sistema gestor de base de datos
(extensiones nativas). Es decir, que si queríamos acceder a una base de datos de PostgreSQL,
deberíamos instalar y utilizar la extensión de ese gestor en concreto. Las funciones y objetos a utilizar
eran distintos para cada extensión.

A partir de la versión 5 de PHP se introdujo en el lenguaje una extensión para acceder de una forma
común a distintos sistemas gestores: PDO. La gran ventaja de PDO está clara: podemos seguir
utilizando una misma sintaxis aunque cambiemos el motor de nuestra base de datos. Por el
contrario, en algunas ocasiones preferiremos seguir usando extensiones nativas en nuestros
programas. Mientras PDO ofrece un conjunto común de funciones, las extensiones nativas
normalmente ofrecen más potencia (acceso a funciones específicas de cada gestor de base de datos)
y en algunos casos también mayor velocidad.

De los distintos SGBD existentes, vas a aprender a utilizar MySQL. MySQL es un gestor de bases de
datos relacionales de código abierto bajo licencia GNU GPL. Es el gestor de bases de datos más
empleado con el lenguaje PHP. Como ya vimos, es la letra "M" que figura en los acrónimos AMP y
XAMPP.

En esta unidad vas a ver cómo acceder desde PHP a bases de datos MySQL utilizando tanto PDO
como la extensión nativa MySQLi. Previamente verás una pequeña introducción al manejo de MySQL,
aunque para el seguimiento de esta unidad se supone que conoces el lenguaje SQL utilizado en la
gestión de bases de datos relacionales.

Diseño Web Entorno Servidor DAW

- 2 -

Además, para el acceso a las funcionalidades de ambas extensiones deberás utilizar objetos. Aunque
más adelante verás todas las características que nos ofrece PHP para crear programas orientados a
objetos, debemos suponer también en este punto un cierto conocimiento de programación
orientada a objetos. Básicamente, debes saber cómo crear y utilizar objetos.

En PHP se utiliza la palabra new para crear un nuevo objeto instanciando una clase:
$a = new A();

Y para acceder a los miembros de un objeto, debes utilizar el operador flecha ->:
$a->fecha();

Características básicas de la utilización de objetos en PHP
La programación orientada a objetos es una metodología de programación avanzada y bastante
extendida, en la que los sistemas se modelan creando clases, que son un conjunto de datos y
funcionalidades. Las clases son definiciones, a partir de las que se crean objetos. Los objetos son
ejemplares de una clase determinada y como tal, disponen de los datos y funcionalidades definidos
en la clase.

La programación orientada a objetos permite concebir los programas de una manera bastante
intuitiva y cercana a la realidad. La tendencia es que un mayor número de lenguajes de programación
adopten la programación orientada a objetos como paradigma para modelizar los sistemas. Prueba
de ello es la nueva versión de PHP (5), que implanta la programación de objetos como metodología
de desarrollo. También Microsoft ha dado un vuelco hacia la programación orientada a objetos, ya
que .NET dispone de varios lenguajes para programar y todos orientados a objetos.

Así pues, la programación orientada a objetos es un tema de gran interés, pues es muy utilizada y
cada vez resulta más esencial para poder desarrollar en casi cualquier lenguaje moderno. En este
artículo vamos ver algunas nociones sobre la programación orientada a objetos en PHP. Aunque es
un tema bastante amplio, novedoso para muchos y en un principio, difícil de asimilar, vamos a tratar
de explicar la sintaxis básica de PHP para utilizar objetos, sin meternos en mucha teoría de
programación orientada a objetos en general.

Las clases: class

Una clase es un conjunto de variables, llamados atributos, y funciones, llamadas métodos, que
trabajan sobre esas variables. Las clases son, al fin y al cabo, una definición: una especificación de
propiedades y funcionalidades de elementos que van a participar en nuestros programas.

Por ejemplo, la clase "Caja" tendría como atributos características como las dimensiones, color,
contenido y cosas semejantes. Las funciones o métodos que podríamos incorporar a la clase "caja"
son las funcionalidades que deseamos que realice la caja, como introduce(), muestra_contenido(),
comprueba_si_cabe(), vaciate()...

Las clases en PHP se definen de la siguiente manera:

<?

class Caja{

var $alto;

var $ancho;

var $largo;

var $contenido;

var $color;

function introduce($cosa){

$this->contenido = $cosa;

}

Trabajar con bases de datos en PHP Tema 3

- 3 -

function muestra_contenido(){

echo $this->contenido;

}

}

?>

En este ejemplo se ha creado la clase Caja, indicando como atributos el ancho, alto y largo de la caja,
así como el color y el contenido. Se han creado, para empezar, un par de métodos, uno para
introducir un elemento en la caja y otro para mostrar el contenido.

Si nos fijamos, los atributos se definen declarando unas variables al principio de la clase. Los métodos
se definen declarando funciones dentro de la clase. La variable $this, utilizada dentro de los
métodos la explicaremos un poco más abajo.

Utilizar la clase

Las clases solamente son definiciones. Si queremos utilizar la clase tenemos que crear un ejemplar de
dicha clase, lo que corrientemente se le llama instanciar un objeto de una clase.

$micaja = new Caja;

Con esto hemos creado, o mejor dicho, instanciado, un objeto de la clase Caja llamado $micaja.

$micaja->introduce("algo");

$micaja->muestra_contenido();

Con estas dos sentencias estamos introduciendo "algo" en la caja y luego estamos mostrando ese
contendido en el texto de la página. Nos fijamos que los métodos de un objeto se llaman utilizando el
código "->".

nombre_del_objeto->nombre_de_metodo()

Para acceder a los atributos de una clase también se accede con el código "->". De esta forma:
nombre_del_objeto->nombre_del_atributo

La variable $this

Dentro de un método, la variable $this hace referencia al objeto sobre el que invocamos el método.
En la invocación $micaja->introduce("algo") se está llamando al método introduce sobre el objeto
$micaja. Cuando se está ejecutando ese método, se vuelca el valor que recibe por parámetro en el
atributo contenido. En ese caso $this->contenido hace referencia al atributo contenido del objeto
$micaja, que es sobre el que se invocaba el método.

Constructores

Los constructores son funciones, o métodos, que se encargan de realizar las tareas de inicialización
de los objetos al ser instanciados. Es decir, cuando se crean los objetos a partir de las clases, se llama
a un constructor que se encarga de inicializar los atributos del objeto y realizar cualquier otra tarea
de inicialización que sea necesaria.

No es obligatorio disponer de un constructor, pero resultan muy útiles y su uso es muy habitual. En el
ejemplo de la caja, que comentábamos anteriormente, lo normal sería inicializar las variables como
color o las relacionadas con las dimensiones y, además, indicar que el contenido de la caja está vacío.
Si no hay un constructor no se inicializan ninguno de los atributos de los objetos.

Diseño Web Entorno Servidor DAW

- 4 -

El constructor se define dentro de la propia clase, como si fuera otro método. El único detalle es que
el constructor debe tener el mismo nombre que la clase. Atentos a PHP, que diferencia entre
mayúsculas y minúsculas. A partir de la versión de PHP 5, para definir métodos constructores, el
constructor de la clase puede llamarse __construct(). Se permiten las dos formas por temas de
compatibilidad con versiones anteirores. A partir de PHP 7 es obligatorio usar __construct.

Para la clase Caja definida anteriormente, se podría declarar este constructor:

function Caja($alto=1,$ancho=1,$largo=1,$color="negro"){

$this->alto=$alto;

$this->ancho=$ancho;

$this->largo=$largo;

$this->color=$color;

$this->contenido="";

}

En este constructor recibimos por parámetro todos los atributos que hay que definir en una caja.
Es muy útil definir unos valores por defecto en los parámetros que recibe el constructor, igualando el
parámetro a un valor dentro de la declaración de parámetros de la función constructora, pues así,
aunque se llame al constructor sin proporcionar parámetros, se inicializará con los valores por
defecto que se hayan definido.

Es importante señalar que en los constructores no se tienen por qué recibir todos los valores para
inicializar el objeto. Hay algunos valores que pueden inicializarse a vacío o a cualquier otro valor fijo,
como en este caso el contenido de la caja, que inicialmente hemos supuesto que estará vacía.

// function __construct($alto=1,$ancho=1,$largo=1,$color="negro"){

Trabajar con bases de datos en PHP Tema 3

- 5 -

2.- MySQL.

Caso práctico
Juan y Carlos deciden comenzar revisando el servidor que van a utilizar, MySQL. Aunque van a
utilizar un servidor que ya está en funcionamiento, deben comprender sus capacidades y las
herramientas de las que disponen para poder gestionar tanto el servidor como los datos que
almacena.
María conoce bien MySQL y les orienta sobre los pasos
necesarios para instalarlo y configurarlo. Con su ayuda y con el
permiso de Esteban, hacen una copia a algunos de los datos que
necesitan, y los replican en un servidor local para poder trabajar
con ellos. Por supuesto, se aseguran de no utilizar para las
pruebas información sensible como la de los clientes o
proveedores, que pueda ocasionarles problema legales.

MySQL es un sistema gestor de bases de datos (SGBD) relacionales. Es un programa de código
abierto que se ofrece bajo licencia GNU GPL, aunque también ofrece una licencia comercial en caso
de que quieras utilizarlo para desarrollar aplicaciones de código propietario. En las últimas versiones
(a partir de la 5.1), se ofrecen, de hecho, varios productos distintos: uno de código libre (Community
Edition), y otro u otros comerciales (Standard Edition, Enterprise Edition).

Incorpora múltiples motores de almacenamiento, cada uno con características propias: unos son más
veloces, otros, aportan mayor seguridad o mejores capacidades de búsqueda. Cuando crees una base
de datos, puedes elegir el motor en función de las características propias de la aplicación. Si no lo
cambias, el motor que se utiliza por defecto se llama MyISAM, que es muy rápido pero a cambio no
contempla integridad referencial (característica de las bases de datos que permite crear relaciones válidas entre dos registros

de la misma o de diferentes tablas, y definir las operaciones necesarias para mantener la validez de las relaciones cuando se borra o

modifica alguno de los registros) ni tablas transaccionales (conjunto de operaciones sobre los datos que se han de realizar de

forma conjunta, una sola vez, e independientemente del resto de manipulaciones sobre los datos. Toda transacción debe cumplir cuatro

propiedades: atomicidad, consistencia, aislamiento y permanencia). El motor InnoDB es un poco más lento pero sí
soporta tanto integridad referencial como tablas transaccionales.

MySQL se emplea en múltiples aplicaciones web, ligado en la mayor parte de los casos al lenguaje
PHP y al servidor web Apache. Utiliza SQL para la gestión, consulta y modificación de la información
almacenada. Soporta la mayor parte de las características de ANSI SQL 99 (revisión del estándar ANSI SQL del

año 1999, que agrega a la revisión anterior (SQL2 o SQL 92) disparadores, expresiones regulares, y algunas características de orientación a

objetos), y añade además algunas extensiones propias.

http://dev.mysql.com/doc/refman/5.0/es/index.html

Trabajar con bases de datos en PHP Tema 3

- 15 -

3.- Utilización de bases de datos MySQL en PHP.

Caso práctico
Entre María, Juan y Carlos, han creado una pequeña base de datos con cuatro tablas y unas
decenas de registros que usarán en las pruebas de la nueva aplicación web.
Juan, que ha tenido cierta experiencia programando aplicaciones en PHP, se da cuenta que el
lenguaje ha evolucionado mucho en los últimos tiempos. Y uno de los aspectos que más ha
evolucionado es precisamente el que concierne al acceso a bases de datos MySQL.
En las aplicaciones que había realizado hace ya algunos años, siempre había utilizado la misma
extensión. Y ahora, por lo que ha estado viendo, existen otras maneras más eficientes o más
genéricas de llevar a cabo esa tarea.
Para estar seguro, busca consejo en algunos programadores amigos y llega a una conclusión:
tendrá que escoger entre una extensión nativa, MySQLi, y PDO. Revisa la documentación sobre
ambas y realiza un pequeño estudio comparativo. Además, diseña unas pruebas para llevar a cabo
con la ayuda de Carlos y poder tomar una decisión. Siempre es mejor asegurarse antes de empezar,
aunque eso implique alargar algo más los plazos.

Como ya viste, existen dos formas de comunicarse con una base de datos desde PHP: utilizar una
extensión nativa programada para un SGBD concreto, o utilizar una extensión que soporte varios
tipos de bases de datos. Tradicionalmente las conexiones se establecían utilizando la extensión
nativa mysql. Esta extensión se mantiene en la actualidad para dar soporte a las aplicaciones ya
existentes que la utilizan, pero no se recomienda utilizarla para desarrollar nuevos programas. Lo
más habitual es elegir entre MySQLi (extensión nativa) y PDO.

Con cualquiera de ambas extensiones, podrás realizar acciones sobre las bases de datos como:
 Establecer conexiones.
 Ejecutar sentencias SQL.
 Obtener los registros afectados o devueltos por una sentencia SQL.
 Emplear transacciones.
 Ejecutar procedimientos almacenados.
 Gestionar los errores que se produzcan durante la conexión o en el establecimiento de la misma.

PDO y MySQLi (y también la antigua extensión mysql) utilizan un driver de bajo nivel para
comunicarse con el servidor MySQL. Hasta hace poco el único driver disponible para realizar esta
función era libmysql, que no estaba optimizado para ser utilizado desde PHP. A partir de la versión
5.3, PHP viene preparado para utilizar también un nuevo driver mejorado para realizar esta función,
el Driver Nativo de MySQL, mysqlnd.

3.1.- Extensión MySQLi.
Esta extensión se desarrolló para aprovechar las ventajas que
ofrecen las versiones 4.1.3 y posteriores de MySQL, y viene
incluida con PHP a partir de la versión 5. Ofrece un interface de
programación dual, pudiendo accederse a las funcionalidades
de la extensión utilizando objetos o funciones de forma
indiferente. Por ejemplo, para establecer una conexión con un servidor MySQL y consultar su
versión, podemos utilizar cualquiera de las siguientes formas:
// utilizando constructores y métodos de la programación orientada a objetos

$conexion = new mysqli('localhost', 'usuario', 'contraseña', 'base_de_datos');

print conexion->server_info;

// utilizando llamadas a funciones

$conexion = mysqli_connect('localhost', 'usuario', 'contraseña', 'base_de_datos');

print mysqli_get_server_info($conexion);

En ambos casos, la variable $conexion es de tipo objeto. La utilización de los métodos y propiedades
que aporta la clase mysqli normalmente produce un código más corto y legible que si utilizas
llamadas a funciones.

Diseño Web Entorno Servidor DAW

- 16 -

Toda la información relativa a la instalación y utilización de la extensión, incluyendo las
funciones y métodos propios de la extensión, se puede consultar en el manual de PHP.

http://es.php.net/manual/es/book.mysqli.php

Entre las mejoras que aporta a la antigua extensión mysql, figuran:
 Interface orientado a objetos.
 Soporte para transacciones.
 Soporte para consultas preparadas.
 Mejores opciones de depuración.

Como ya viste en la primera unidad, las opciones de configuración de PHP se almacenan en el fichero
php.ini. En este fichero hay una sección específica para las opciones de configuración propias de
cada extensión. Entre las opciones que puedes configurar para la extensión MySQLi están:
 mysqli.allow_persistent. Permite crear conexiones persistentes.
 mysqli.default_port. Número de puerto TCP predeterminado a utilizar cuando se conecta al

servidor de base de datos.
 mysqli.reconnect. Indica si se debe volver a conectar automáticamente en caso de que se pierda

la conexión.
 mysqli.default_host. Host predeterminado a usar cuando se conecta al servidor de base de

datos.
 mysqli.default_user. Nombre de usuario predeterminado a usar cuando se conecta al servidor

de base de datos.
 mysqli.default_pw. Contraseña predeterminada a usar cuando se conecta al servidor de base de

datos.

3.1.1.- Establecimiento de conexiones.

Para poder comunicarte desde un programa PHP con un servidor MySQL, el
primer paso es establecer una conexión. Toda comunicación posterior que tenga
lugar, se hará utilizando esa conexión.
Si utilizas la extensión MySQLi, establecer una conexión con el servidor significa
crear una instancia de la clase mysqli. El constructor de la clase puede recibir seis
parámetros, todos opcionales, aunque lo más habitual es utilizar los cuatro primeros:
 El nombre o dirección IP del servidor MySQL al que te quieres conectar.
 Un nombre de usuario con permisos para establecer la conexión.
 La contraseña del usuario.
 El nombre de la base de datos a la que conectarse.
 El número del puerto en que se ejecuta el servidor MySQL.
 El socket o la tubería con nombre (named pipe) a usar.

Si utilizas el constructor de la clase, para conectarte a la base de datos "dwes" puedes hacer:
// utilizando el constructor de la clase

$dwes = new mysqli('localhost', 'dwes', 'abc123.', 'dwes');

connectAunque también tienes la opción de primero crear la instancia, y después utilizar el método
para establecer la conexión con el servidor:
// utilizando el método connect

$dwes = new mysqli();

$dwes->connect('localhost', 'dwes', 'abc123.', 'dwes');

Por el contrario, utilizando el interface procedimental de la extensión:
// utilizando llamadas a funciones

$dwes = mysqli_connect('localhost', 'dwes', 'abc123.', 'dwes');

http://es.php.net/manual/es/book.mysqli.php
http://es2.php.net/manual/es/mysqli.configuration.php

Trabajar con bases de datos en PHP Tema 3

- 17 -

Es muy importante el control y gestión de los errores devueltos por el servidor de Base de Datos. El
comportamiento predeterminado del manejo de errores la MySQLi ha cambiado a partir de la
versión 8.1 de PHP.

a) En versiones de PHP anteriores a la 8.1, silenciaba los errores de MySQL por
pantalla y los almacenaba en las propiedades de de error de la clase
(connect_errno, connect_error, errno y error)

b) En versiones de PHP posteriores a la 8.1, MySQLi genera una excepción automáticamente
cuando el servidor de BD devuelve un error.

Por ejemplo, el siguiente código comprueba el establecimiento de una conexión con la base de datos
"dwes" y finaliza la ejecución si se produce algún error:
@ $dwes = new mysqli('localhost', 'dwes', 'abc123.', 'dwes');

$error = $dwes->connect_errno;

if ($error != 0) {

echo "<p>Error $error conectando a la base de datos: $dwes->connect_error</p>";

exit();

}

En PHP, como veremos posteriormente con más detalle, puedes anteponer a cualquier
expresión el operador de control de errores @ para que se ignore cualquier posible error
que pueda producirse al ejecutarla.

http://es.php.net/manual/es/language.operators.errorcontrol.php

Si una vez establecida la conexión, quieres cambiar la base de datos puedes usar el método
select_db (o la función mysqli_select_db de forma equivalente) para indicar el nombre de la nueva.
// utilizando el método connect

$dwes->select_db('otra_bd');

Una vez finalizadas las tareas con la base de datos, utiliza el método close (o la función
mysqli_close) para cerrar la conexión con la base de datos y liberar los recursos que utiliza.
$dwes->close();

La forma más inmediata de ejecutar una consulta, si utilizas esta extensión, es el
método query, equivalente a la función mysqli_query. Si se ejecuta una consulta de
acción que no devuelve datos (como una sentencia SQL de tipo UPDATE, INSERT o
DELETE), la llamada devuelve true si se ejecuta correctamente o false en caso
contrario. El número de registros afectados se puede obtener con la propiedad
affected_rows (o con la función mysqli_affected_rows).
@ $dwes = new mysqli('localhost', 'dwes', 'abc123.', 'dwes');

$error = $dwes->connect_errno;

if ($error == 0) {

$resultado = $dwes->query('DELETE FROM stock WHERE unidades=0');

if ($resultado) {

Para asegurarnos que los datos obtenidos desde el servidor tienen la codificación UTF-8,
podemos ejecutar después de la conexión: $dwes->set_charset('utf8mb4');

3.1.2.- Ejecución de consultas.

try{
$dwes = new mysqli('localhost', 'dwes', 'abc123.', 'dwes');

} catch (Exception $ex) {
die($ex->getMessage());

}

El modo por defecto a partir de PHP 8.1 está establecido como:
 mysqli_report(MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT);
Para trabajar sin excepciones, hay que cambiar el modo por defecto a:
 mysqli_report(MYSQLI_REPORT_OFF);

http://es.php.net/manual/es/language.operators.errorcontrol.php

Diseño Web Entorno Servidor DAW

- 18 -

print "<p>Se han borrado $dwes->affected_rows registros.</p>";

}

$dwes->close();

}

En el caso de ejecutar una sentencia SQL que sí devuelva datos (como un SELECT), éstos se devuelven
en forma de un objeto resultado (de la clase mysqli_result). En el punto siguiente verás cómo se
pueden manejar los resultados obtenidos.

$resultado = $dwes->query('SELECT producto, unidades FROM stock', MYSQLI_USE_RESULT);

Otra forma que puedes utilizar para ejecutar una consulta es el método real_query (o la
función mysqli_real_query), que siempre devuelve true o false según se haya ejecutado
correctamente o no. Si la consulta devuelve un conjunto de resultados, se podrán recuperar
de forma completa utilizando el método store_result, o según vaya siendo necesario gracias
al método use_result.

http://es.php.net/manual/es/mysqli.real-query.php

Es importante tener en cuenta que los resultados obtenidos se almacenarán en memoria mientras
los estés usando. Cuando ya no los necesites, los puedes liberar con el método free de la clase
mysqli_result (o con la función mysqli_free_result):
$resultado->free();

3.1.3.- Transacciones.

Como ya comentamos, si necesitas utilizar transacciones deberás asegurarte de que estén
soportadas por el motor de almacenamiento que gestiona tus tablas en MySQL. Si utilizas X, por
defecto cada consulta individual se incluye dentro de su propia transacción. Puedes gestionar este
comportamiento con el método autocommit (función mysqli_autocommit).
$dwes->autocommit(false); // deshabilitamos el modo transaccional automático

Al deshabilitar las transacciones automáticas, las siguientes operaciones sobre la base de datos
iniciarán una transacción que deberás finalizar utilizando:
 commit (o la función mysqli_commit). Realizar una operación "commit" de la transacción actual,

devolviendo true si se ha realizado correctamente o false en caso contrario.
 rollback (o la función mysqli_rollback). Realizar una operación "rollback" de la transacción

actual, devolviendo true si se ha realizado correctamente o false en caso contrario.
…

$dwes->query('DELETE FROM stock WHERE unidades=0'); // Inicia una transacción

$dwes->query('UPDATE stock SET unidades=3 WHERE producto="STYLUSSX515W"');

…

El método query tiene un parámetro opcional que afecta a cómo se obtienen internamente los
resultados, pero no a la forma de utilizarlos posteriormente. En la opción por defecto,
MYSQLI_STORE_RESULT, los resultados se recuperan todos juntos de la base de datos y se almacenan de
forma local. Hasta que no están todos recuperados no se podrán leer. Si cambiamos esta opción por
el valor MYSQLI_USE_RESULT, los datos se van recuperando del servidor según se vayan necesitando, es
decir, el recurso se podrá leer aunque todavía no se haya rellenado entero.

$dwes->commit(); // Confirma los cambios

if ($mysqli->query('SELECT Name FROM City ORDER BY ID LIMIT 20, 5')) {
 do {
 if ($result = $mysqli->use_result()) {
 while ($row = $result->fetch_row()) {
 printf("%s\n", $row[0]);
 }
 $result->close();
 }
 if ($mysqli->more_results())

 printf("-----------------\n");
 } while ($mysqli->next_result());
}

http://es.php.net/manual/es/mysqli.real-query.php

Trabajar con bases de datos en PHP Tema 3

- 19 -

Una vez finalizada esa transacción, comenzará otra de forma automática.
Las consultas "query" y el commit deben ir dentro del try, y el rollback en el catch. Si las dos
instrucciones están correctas se hace el commit, si alguna de ellas fallas, saltaría la excepción y
se ejecutaría el rollback.

Según la información que figura en la tabla stock de la base de datos dwes, la tienda 1
(CENTRAL) tiene 2 unidades del producto de código 3DSNG y la tienda 3 (SUCURSAL2)
ninguno. Suponiendo que los datos son esos (no hace falta que los compruebes en el
código), utiliza una transacción para mover una unidad de ese producto de la tienda 1 a la
tienda 3.
Deberás hacer una consulta de actualización (para poner unidades=1 en la tienda 1) y otra
de inserción (pues no existe ningún registro previo para la tienda 3).
Comprueba que se ejecuta bien solo la primera vez, pues en ejecuciones
posteriores ya no es posible insertar la misma fila en la tabla.

En el modo de gestión de transacciones que se utiliza por defecto, ¿es posible revertir los

cambios que se aplican al ejecutar una consulta de acción?

No Sí

Diseño Web Entorno Servidor DAW

- 20 -

3.1.4.- Obtención y utilización de conjuntos de resultados.

Ya sabes que al ejecutar una consulta que devuelve datos obtienes un objeto de la clase
mysqli_result. Esta clase sigue los criterios de ofrecer un interface de programación dual, es decir,
una función por cada método con la misma funcionalidad que éste.

Para trabajar con los datos obtenidos del servidor, tienes varias posibilidades:
fetch_array (función mysqli_fetch_array). Obtiene un registro completo del conjunto de resultados
y lo almacena en un array. Por defecto el array contiene tanto claves numéricas como asociativas.

Por ejemplo, para acceder al primer campo devuelto, podemos utilizar como clave el número 0 o su
nombre indistintamente.
$resultado = $dwes->query('SELECT producto, unidades FROM stock WHERE unidades<2');

$stock = $resultado->fetch_array(); // Obtenemos el primer registro

$producto = $stock['producto']; // O también $stock[0];

$unidades = $stock['unidades']; // O también $stock[1];

print "<p>Producto $producto: $unidades unidades.</p>";

Este comportamiento por defecto se puede modificar utilizando un parámetro opcional, que puede
tomar los siguientes valores:
 MYSQLI_NUM. Devuelve un array con claves numéricas.
 MYSQLI_ASSOC. Devuelve un array asociativo.
 MYSQLI_BOTH. Es el comportamiento por defecto, en el que devuelve un array con claves

numéricas y asociativas.

fetch_assoc (función mysqli_fetch_assoc). Idéntico a fetch_array pasando como parámetro
MYSQLI_ASSOC.
fetch_row (función mysqli_fetch_row). Idéntico a fetch_array pasando como parámetro MYSQLI_NUM.
fetch_object (función mysqli_fetch_object). Similar a los métodos anteriores, pero devuelve un
objeto en lugar de un array. Las propiedades del objeto devuelto se corresponden con cada uno de
los campos del registro.

Parar recorrer todos los registros de un array, puedes hacer un bucle teniendo en cuenta que
cualquiera de los métodos o funciones anteriores devolverá null cuando no haya más registros en el
conjunto de resultados.
$resultado = $dwes->query('SELECT producto, unidades FROM stock WHERE unidades<2');

$stock = $resultado->fetch_object();
while ($stock != null) { //while($stock=$resultado->fetch_objetct())

print "<p>Producto $stock->producto: $stock->unidades unidades.</p>";

$stock = $resultado->fetch_object();
}

En el manual de PHP tienes más información sobre los métodos y propiedades de la clase
mysqli_result.

http://es.php.net/manual/es/class.mysqli-result.php

Crea una página web en la que se muestre el stock existente de un determinado producto en
cada una de las tiendas. Para seleccionar el producto concreto utiliza un cuadro de selección
dentro de un formulario en esa misma página, en el que se muestre el nombre de los
todos los productos que hay.

http://es.php.net/manual/es/class.mysqli-result.php

Trabajar con bases de datos en PHP Tema 3

- 21 -

Diseño Web Entorno Servidor DAW

- 22 -

3.1.5.- Consultas preparadas.

Cada vez que se envía una consulta al servidor, éste debe analizarla antes de ejecutarla. Algunas
sentencias SQL, como las que insertan valores en una tabla, deben repetirse de forma habitual en un
programa. Para acelerar este proceso, MySQL admite consultas preparadas. Estas consultas se
almacenan en el servidor listas para ser ejecutadas cuando sea necesario.

Para trabajar con consultas preparadas con la extensión MySQLi de PHP, debes utilizar la clase
mysqli_stmt. Utilizando el método stmt_init de la clase mysqli (o la función mysqli_stmt_init)
obtienes un objeto de dicha clase. También se puede hacer directamente usando el método
prepare(string $query) de la clase MySQLi que devuelve ya el objeto de la clase mysqli_stmt.
$dwes = new mysqli('localhost', 'dwes', 'abc123.', 'dwes');

Los pasos que debes seguir para ejecutar una consulta preparada son:
 Preparar la consulta en el servidor MySQL utilizando el método prepare (función

mysqli_stmt_prepare).
 Ejecutar la consulta, tantas veces como sea necesario, con el método execute (función

mysqli_stmt_execute).
 Una vez que ya no se necesita más, se debe ejecutar el método close (función

mysqli_stmt_close).

Por ejemplo, para preparar y ejecutar una consulta que inserta un nuevo registro en la tabla familia:
$stmt=$dwes->prepare('INSERT INTO familia (cod, nombre) VALUES ("TABLET", "Tablet PC")');

$stmt->execute();
$stmt->close();
$dwes->close();

El problema que ya habrás observado, es que de poco sirve preparar una consulta de inserción de
datos como la anterior, si los valores que inserta son siempre los mismos. Por este motivo las

consultas preparadas admiten parámetros. Para preparar una consulta con parámetros, en lugar de
poner los valores debes indicar con un signo de interrogación su posición dentro de la sentencia SQL.
$dwes->prepare('INSERT INTO familia (cod, nombre) VALUES (?, ?)');

Y antes de ejecutar la consulta tienes que utilizar el método bind_param (o la función
mysqli_stmt_bind_param) para sustituir cada parámetro por su valor. El primer parámetro del método
bind_param es una cadena de texto en la que cada carácter indica el tipo de un parámetro, según la
siguiente tabla.

Caracteres indicativos del tipo de los parámetros en una consulta preparada.

Carácter. Tipo del parámetro.

I. Número entero.
D. Número real (doble precisión).
S. Cadena de texto.
B. Contenido en formato binario (BLOB).

En el caso anterior, si almacenas los valores a insertar en sendas variables, puedes hacer:
$stmt=$dwes->prepare('INSERT INTO familia (cod, nombre) VALUES (?, ?)');

$cod_producto = "TABLET";

$nombre_producto = "Tablet PC";

$stmt->bind_param('ss', $cod_producto, $nombre_producto);
$stmt->execute();
$stmt->close();
$dwes->close();

Trabajar con bases de datos en PHP Tema 3

- 23 -

Cuando uses bind_param para enlazar los parámetros de una consulta preparada con sus respectivos
valores, deberás usar siempre variables como en el ejemplo anterior. Si intentas utilizar literales, por
ejemplo:
$->bind_param('ss', 'TABLET', 'Tablet PC'); // Genera un error

Obtendrás un error. El motivo es que los parámetros del método bind_param se pasan por referencia.
Aprenderás a usar paso de parámetros por referencia en una unidad posterior.

El método bind_param permite tener una consulta preparada en el servidor MySQL y ejecutarla tantas
veces como quieras cambiando ciertos valores cada vez. Además, en el caso de las consultas que
devuelven valores, se puede utilizar el método bind_result (función mysqli_stmt_bind_result) para
asignar a variables los campos que se obtienen tras la ejecución. Utilizando el método fetch
(mysqli_stmt_fetch) se recorren los registros devueltos. Observa el siguiente código:

print "<p>Producto $producto: $unidades unidades.</p>";

}

$dwes->close();

En el manual de PHP tienes más información sobre consultas preparadas y la clase
mysqli_stmt.

http://es.php.net/manual/es/class.mysqli-stmt.php

A partir de la página web obtenida en el ejercicio anterior, añade la opción de modificar el
número de unidades del producto en cada una de las tiendas. Utiliza una consulta preparada
para la actualización de registros en la tabla stock. No es necesario tener en cuenta las tareas
de inserción (no existían unidades anteriormente) y borrado (si el número final de unidades
es cero).
En esta ocasión es necesario crear un nuevo formulario en la página, en la sección donde
se muestra el número de unidades por tienda. Cuando se envía ese formulario, hay que
preparar la consulta y ejecutarla una vez por cada registro de la tabla stock (una vez por
cada tienda en la que exista stock de ese producto).

$stmt=$dwes->prepare('SELECT producto, producto, unidades FROM stock WHERE unidades<2');

$stmt->execute();->execute();

$stmt->bind_result($producto, ->bind_result($producto, $unidades);$unidades);
while($stmt->fetch())->fetch()) { {

print "<p>Producto $producto: $unidades unidades.</p>";

}

$stmt->close();
$dwes->close();

}

$dwes->close();

$resultado=$stmt->get_result();
while($fila=$resultado->fetch_object())

print "<p>Producto $fila->producto: $fila->unidades unidades</p>";
}

$dwes->close();

stmt=$dwes->prepare('SELECT producto, producto, unidades FROM stock WHERE unidades<2');
stmt->execute();->execute();

$stmt->close();

http://es.php.net/manual/es/class.mysqli-stmt.php

Trabajar con bases de datos en PHP Tema 3

- 24 -

3.2.- PHP Data Objects (PDO).
Si vas a programar una aplicación que utilice como sistema
gestor de bases de datos MySQL, la extensión MySQLi que
acabas de ver es una buena opción. Ofrece acceso a todas las
características del motor de base de datos, a la vez que reduce
los tiempos de espera en la ejecución de sentencias.

Sin embargo, si en el futuro tienes que cambiar el SGBD por otro
distinto, tendrás que volver a programar gran parte del código de
la misma. Por eso, antes de comenzar el desarrollo, es muy
importante revisar las características específicas del proyecto. En el caso de que exista la posibilidad,
presente o futura, de utilizar otro servidor como almacenamiento, deberás adoptar una capa de
abstracción para el acceso a los datos. Existen varias alternativas como ODBC, pero sin duda la
opción más recomendable en la actualidad es PDO.

El objetivo es que si llegado el momento necesitas cambiar el servidor de base de datos, las
modificaciones que debas realizar en tu código sean mínimas. Incluso es posible desarrollar
aplicaciones preparadas para utilizar un almacenamiento u otro según se indique en el momento de
la ejecución, pero éste no es el objetivo principal de PDO. PDO no abstrae de forma completa el
sistema gestor que se utiliza. Por ejemplo, no modifica las sentencias SQL para adaptarlas a las
características específicas de cada servidor. Si esto fuera necesario, habría que programar una capa
de abstracción completa.

http://educacionadistancia.juntadeandalucia.es/cursos/file.php/596/moddata/scorm/3180/DWES03_CONT_R13_PDO_phpinfo.jpg

Diseño Web Entorno Servidor DAW

- 25 -

La extensión PDO debe utilizar un driver o controlador específico para el tipo de base de datos que se
utilice. Para consultar los controladores disponibles en tu instalación de PHP, puedes utilizar la
información que proporciona la función phpinfo.

PDO se basa en las características de orientación a objetos de PHP pero, al contrario que la extensión
MySQLi, no ofrece un interface de programación dual. Para acceder a las funcionalidades de la
extensión tienes que emplear los objetos que ofrece, con sus métodos y propiedades. No existen
funciones alternativas.

3.2.1.- Establecimiento de conexiones.

Para establecer una conexión con una base de datos utilizando PDO, debes instanciar un objeto de la
clase PDO pasándole los siguientes parámetros (solo el primero es obligatorio):
 Origen de datos (DSN). Es una cadena de texto que indica qué controlador se va a utilizar y a

continuación, separadas por el carácter dos puntos, los parámetros específicos necesarios por el
controlador, como por ejemplo el nombre o dirección IP del servidor y el nombre de la base de
datos.

 Nombre de usuario con permisos para establecer la conexión.
 Contraseña del usuario.
 Opciones de conexión, almacenadas en forma de array.

Por ejemplo, podemos establecer una conexión con la base de datos 'dwes' creada anteriormente de
la siguiente forma:
$dwes = new PDO('mysql:host=localhost;dbname=dwes', 'dwes', 'abc123.');

Si como en el ejemplo, se utiliza el controlador para MySQL, los parámetros específicos para utilizar
en la cadena DSN (separadas unas de otras por el carácter punto y coma) a continuación del prefijo
mysql: son los siguientes:
 host. Nombre o dirección IP del servidor.
 port. Número de puerto TCP en el que escucha el servidor.
 dbname. Nombre de la base de datos.
 unix_socket. Socket de MySQL en sistemas Unix.

Si quisieras indicar al servidor MySQL utilice codificación UTF-8 para los datos que se
transmitan, puedes usar una opción específica de la conexión:
$opciones = array(PDO::MYSQL_ATTR_INIT_COMMAND => "SET NAMES utf8mb4");
$dwes = new PDO('mysql:host=localhost;dbname=dwes', 'dwes', 'abc123.', $opciones);

En el manual de PHP puedes consultar más información sobre los controladores existentes,
los parámetros de las cadenas DSN y las opciones de conexión particulares de cada uno.

http://es.php.net/manual/es/pdo.drivers.php

Una vez establecida la conexión, puedes utilizar el método getAttribute para obtener información
del estado de la conexión y setAttribute para modificar algunos parámetros que afectan a la misma.
Por ejemplo, para obtener la versión del servidor puedes hacer:
$version = $dwes->getAttribute(PDO::ATTR_SERVER_VERSION);

print "Versión: $version";

Y si quieres por ejemplo que te devuelva todos los nombres de columnas en mayúsculas:
$version = $dwes->setAttribute(PDO::ATTR_CASE, PDO::CASE_UPPER);

Otra opción para indicar al servidor MySQL que utilice codificación UTF-8 para los
datos que se transmitan es indicarlo en el primer parámetro de la conexión:

$dwes = new PDO('mysql:host=localhost;dbname=dwes;charset=utf8mb4', 'dwes', 'abc123.', $opciones);

http://es.php.net/manual/es/pdo.drivers.php

Trabajar con bases de datos en PHP Tema 3

- 26 -

En el manual de PHP, las páginas de las funciones getAttribute y setAttribute te permiten
consultar los posibles parámetros que se aplican a cada una.

http://es.php.net/manual/es/pdo.getattribute.php
http://es.php.net/manual/es/pdo.setattribute.php

3.2.2.- Ejecución de consultas.

Para ejecutar una consulta SQL utilizando PDO, debes diferenciar aquellas sentencias SQL que no
devuelven como resultado un conjunto de datos, de aquellas otras que sí lo devuelven.

En el caso de las consultas de acción, como INSERT, DELETE o UPDATE, el método exec devuelve el
número de registros afectados.
$registros = $dwes->exec('DELETE FROM stock WHERE unidades=0');

print "<p>Se han borrado $registros registros.</p>";

Si la consulta genera un conjunto de datos, como es el caso de SELECT, debes utilizar el método
query, que devuelve un objeto de la clase PDOStatement.
$dwes = new PDO("mysql:host=localhost;dbname=dwes", "dwes", "abc123.");

$resultado = $dwes->query("SELECT producto, unidades FROM stock");

Por defecto PDO trabaja en modo "autocommit", esto es, confirma de forma automática cada
sentencia que ejecuta el servidor. Para trabajar con transacciones, PDO incorpora tres métodos:
 beginTransaction. Deshabilita el modo "autocommit" y comienza una nueva transacción, que

finalizará cuando ejecutes uno de los dos métodos siguientes.
 commit. Confirma la transacción actual.
 rollback. Revierte los cambios llevados a cabo en la transacción actual.

Una vez ejecutado un commit o un rollback, se volverá al modo de confirmación automática.
$ok = true;

$dwes->beginTransaction();

if($dwes->exec('DELETE …') == 0) $ok = false;

if($dwes->exec('UPDATE …') == 0) $ok = false;

…

if ($ok) $dwes->commit(); // Si todo fue bien confirma los cambios

else $dwes->rollback(); // y si no, los revierte

El método "exec" puede devolver el valor booleano FALSE (cuando se produce un error), pero
también puede devolver un valor no booleano que se evalúa como FALSE (Un 0). Hay que tener
cuidado y usar el operador === para evitar problemas, ya que si no se ve afectado ningún registro por
la sentencia SQL, devolverá 0 que se evalúa como false.

Ten en cuenta que no todos los motores soportan transacciones. Tal es el caso, como ya viste,
del motor MyISAM de MySQL. En este caso concreto, PDO ejecutará el método beginTransaction
sin errores, pero naturalmente no será capaz de revertir los cambios si fuera necesario ejecutar
un rollback.

De una forma similar al anterior ejercicio de transacciones, utiliza PDO para repartir entre las
tiendas las tres unidades que figuran en stock del producto con código PAPYRE62GB.
En esta ocasión, para comprobar si los cambios se hacen correctamente en la base de
datos y confirmar la transacción, se revisa el número de registros afectados por la
ejecución de las consultas. Comprueba que la segunda vez que intentas ejecutarlo no
actualizará los datos, tal y como sucedía en el ejercicio equivalente de la extensión
MySQLi.

if($dwes->exec('UPDATE …') === FALSE) $ok = false;

Si se usan transacciones, las consultas "query" y el commit deben ir dentro del try, y el rollback en
el catch. Si las dos instrucciones están correctas se hace el commit, si alguna de ellas fallas,
saltaría la excepción y se ejecutaría el rollback.

http://es.php.net/manual/es/pdo.getattribute.php
http://es.php.net/manual/es/pdo.setattribute.php

Diseño Web Entorno Servidor DAW

- 27 -

3.2.3.- Obtención y utilización de conjuntos de resultados.

Al igual que con la extensión MySQLi, en PDO tienes varias posibilidades para tratar con el conjunto
de resultados devuelto por el método query. La más utilizada es el método fetch de la clase
PDOStatement. Este método devuelve un registro del conjunto de resultados, o false si ya no quedan
registros por recorrer.
$dwes = new PDO("mysql:host=localhost;dbname=dwes", "dwes", "abc123.");

$resultado = $dwes->query("SELECT producto, unidades FROM stock");

while ($registro = $resultado->fetch()) {

echo "Producto ".$registro['producto'].": ".$registro['unidades']."
";

}

Por defecto, el método fetch genera y devuelve, a partir de cada registro, un array con claves
numéricas y asociativas. Para cambiar su comportamiento, admite un parámetro opcional que puede
tomar uno de los siguientes valores:
 PDO::FETCH_ASSOC. Devuelve solo un array asociativo.
 PDO::FETCH_NUM. Devuelve solo un array con claves numéricas.
 PDO::FETCH_BOTH. Devuelve un array con claves numéricas y asociativas. Es el comportamiento

por defecto.
 PDO::FETCH_OBJ. Devuelve un objeto cuyas propiedades se corresponden con los campos del

registro.
$dwes = new PDO("mysql:host=localhost;dbname=dwes", "dwes", "abc123.");

$resultado = $dwes->query("SELECT producto, unidades FROM stock");

while ($registro = $resultado->fetch(PDO::FETCH_OBJ)) {

echo "Producto ".$registro->producto.": ".$registro->unidades."
";

}





PDO::FETCH_LAZY. Devuelve tanto el objeto como el array con clave dual anterior.
PDO::FETCH_BOUND. Devuelve true y asigna los valores del registro a variables, según se indique
con el método bindColumn. Este método debe ser llamado una vez por cada columna, indicando
en cada llamada el número de columna (empezando en 1) y la variable a asignar.
$dwes = new PDO("mysql:host=localhost;dbname=dwes", "dwes", "abc123.");

$resultado = $dwes->query("SELECT producto, unidades FROM stock");

$resultado->bindColumn(1, $producto);

$resultado->bindColumn(2, $unidades);

while ($registro = $resultado->fetch(PDO::FETCH_BOUND)) {
echo "Producto ".$producto.": ".$unidades."
";

}

Modifica la página web que muestra el stock de un producto en las distintas tiendas,
obtenida en un ejercicio anterior utilizando MySQLi, para que use PDO. Omite la gestión de
errores, que veremos en el último punto de este tema.


También se puede utilizar el método fetchObject() que obtiene la siguiente fila y la devuelve
como un objeto.

Trabajar con bases de datos en PHP Tema 3

- 28 -

3.2.4.- Consultas preparadas.

Al igual que con MySQLi, también utilizando PDO podemos preparar consultas parametrizadas en el
servidor para ejecutarlas de forma repetida. El procedimiento es similar e incluso los métodos a
ejecutar tienen prácticamente los mismos nombres.

Para preparar la consulta en el servidor MySQL, deberás utilizar el método prepare de la clase PDO.
Este método devuelve un objeto de la clase PDOStatement. Los parámetros se pueden marcar
utilizando signos de interrogación como en el caso anterior.
$dwes = new PDO("mysql:host=localhost;dbname=dwes", "dwes", "abc123.");

$consulta = $dwes->prepare('INSERT INTO familia (cod, nombre) VALUES (?, ?)');

O también utilizando parámetros con nombre, precediéndolos por el símbolo de dos puntos.
$dwes = new PDO("mysql:host=localhost;dbname=dwes", "dwes", "abc123.");

$consulta = $dwes->prepare('INSERT INTO familia (cod, nombre) VALUES (:cod, :nombre)');

Antes de ejecutar la consulta hay que asignar un valor a los parámetros utilizando el método
bindParam de la clase PDOStatement. Si utilizas signos de interrogación para marcar los parámetros, el
procedimiento es equivalente al método bindColumn que acabamos de ver.
$cod_producto = "TABLET";

$nombre_producto = "Tablet PC";

$consulta->bindParam(1, $cod_producto);

$consulta->bindParam(2, $nombre_producto);

Si utilizas parámetros con nombre, debes indicar ese nombre en la llamada a bindParam.
$consulta->bindParam(":cod", $cod_producto);

$consulta->bindParam(":nombre", $nombre_producto);

Tal y como sucedía con la extensión MySQLi, cuando uses bindParam para asignar los parámetros de
una consulta preparada, deberás usar siempre variables como en el ejemplo anterior.

Una vez preparada la consulta y enlazados los parámetros con sus valores, se ejecuta la consulta
utilizando el método execute.
$consulta->execute();

Alternativamente, es posible asignar los valores de los parámetros en el momento de ejecutar la
consulta, utilizando un array (asociativo o con claves numéricas dependiendo de la forma en que
hayas indicado los parámetros) en la llamada a execute.
$parametros = array(":cod" => "TABLET", ":nombre" => "Tablet PC");

$consulta->execute($parametros);

Puedes consultar la información sobre la utilización en PDO de consultas preparadas y la
clase PDOStatement en el manual de PHP.

http://es.php.net/manual/es/class.pdostatement.php

Modifica el ejercicio sobre consultas preparadas que realizaste con la extensión MySQLi, el
que modificaba el número de unidades de un producto en las distintas tiendas, para que
utilice ahora la extensión PDO.
Como puedes comprobar, para obtener la solución se puede aprovechar la mayoría del
código existente en el ejercicio anterior.

Si la consulta preparada devuelve valores, estos se pueden extraer ejecutando después de execute()
los métodos fech() o fetchObject().

