TEMA 3

Contenido
1.- Acceso a bases de datos dESUE PHP. ...ttt e e et e e e e s enbaaeeeeesennes 1
Caracteristicas basicas de la utilizacion de 0bjetos €N PHPcceeiiiiiiiiieccc e e 2
LS ClaSES: ClaSS uuiiutiiuiietietiete ettt ettt ettt e s bt e s bt e s bt e e bt e sbeesatesbeeesbeeaeeebbeehbe e Rt e eReeenbeeateeabeeRb e e A teenbeenbe e be et e enbe e be e beebeenbeenbeen 2
(03] 2= Y ol = ol = 1Y OO RSO RRRPRRRRPRRRO 3
L@ VAETADIE STRIS .ttt ettt ettt e et e et et et et et eeaeeaeeaeeaeeate s eeseeseeaeeat e et e s e s e eaeeae et e et et e et eereerteat et et eeaesre st entetenrennes 3
(00T 4 1 A U o1 {0 T OO rTT PP UPPTOUPPOROPPRRRRPPINt 3
2.-MySQL.....cccoeeereenn.
2.1.- Instalacion Y CONTIGUIACION.eiiiiiiiiicee e e e e e e e e e e et aa e e e e e e e e e s s eenaataaaaseaaaaeaaaaans 5
2.2.- Herramientas de adminiStraCion.ccuueeeoiiiiiee ittt e s e e s st aa e e s s ibae e e s eabbaeee s 6
2.2. 0 MYSGLY MYSGIAGMIN. Lottt ettt et e et e et e e beeabe e s beeabe e s be e bt et e e be e bt e be e be e bt e beenteenheenseenees 7
A o] a1'o 11/ Y7o [o1 1o VOSSPSR
3.- Utilizacién de bases de datos MySQL en PHP
3.1.- EXEENSION IMYSQLI. tutvtiiiiiieee ettt e e e e e e e e e e et et b e e e aeaeeeeeeeasaassbaasaaeeeeeeeeeeannsssasassaaaaaaens 15
3.1.1.- EStablecimiento @ CONBXIONES. ..c.iiiiieieieiesterieetete ettt ettt et st ettt e e stesae st e s bt e st eneensensessesseeseensensensenaesseeneen 16
3.1.2.- EJECUCION 0 CONSUITAS. ...viitiitieiieiteecie ettt ettt et e bt et e ete e s be e be e e aeeebe e seeeaeesseease e seesbeaseesbeese e seesseesaenseesseesseansaenns 17
3.3 TrANSACCIONES. ettt ettt ettt ettt b e b e et e e bt e b e e b e e bt et e et e e bt e b e e b e e bt e bt e b e e bt e bt e b e e eh e bt e b e e heenbeenbe et 18
3.1.4.- Obtencion y utilizacion de conjuntos de reSUIATOS.coiiiriiiiieriereeeeee e 20
3.0.5.- CONSUILAS PrEPAratas. .ooueeiueeieeiieiteeitee sttt te sttt et e bt e sbeesae et e e bt e be e be e bt ebeenbeesbeenbeansee bt e bt enbeenbeenbeenseebeenbeanseenne 22
3.2.- PHP Data OBjJECES (PDO). occ ittt ettt e e ettt e e e e e e e e e e e e aaa s b e e e eeaaeeeeeeeeastaanaeeaaaaaaaans 25
3.2.1.- EStablecimiento 0@ CONBXIONES. ..cuvviiieeeierieetesieeteeete et e et e e e s teste s st e st e aeaesse st asseeseeneensensessesseeseensensensensesseaneen 26
3.2.2.- EJECUCION 0 CONSUITAS. ...viitiiiieticiteecie ettt ettt ettt e e eteeste e te e e teeebe e aeeeaeeeseeseesaeesseaseesbeeseaseessseseeseesseesseensaenns 27
3.2.3.- Obtencidn y utilizacion de conjuNtos de resUTAdOS.ccviiieiiiiiieiieiceee et sbeesbeesreesbeessae e 28
3.2.4.- CONSUITAS PrEPAraAtas. ..ooueeiuieiiieitieiieeiieeitt et este e st e steesteesteeste e s st esbe e beebe e seebeeseenseesseenseenseeseesseenseesseenbeeseeseessaensaenns 30
4.- Errores y Manejo A& EXCEPCIONES. ...ccciiiuireieeeeectiteeeeeeeeitttreeeeeeesraeeeeeseaaataeaeeessaassseeeessaasssseeeessannres 33

L B o ol =T o Tol o] =TSP P PP P PRSP PPPPI 34

Trabajar con bases de datos en PHP Tema 3

Trabajar con bases de datos en PHP.

Caso practico

Una de las tareas prioritarias que tienen que abordar en el nuevo proyecto de BK Programacion es el
almacenamiento de la informacion que utilizard la aplicacién web, y el método de acceso que se
utilizarad para manejarla desde PHP.

En una reunién de trabajo, Esteban les informa que para la gestion de la empresa estan utilizando
una aplicacion de codigo libre que almacena los datos en un servidor MySQL. Afortunadamente, este
servidor es el mas utilizado en la programaciéon con lenguaje PHP, por lo que no tendran problemas
en integrar la nueva aplicacion web con la ya existente. Solo necesitan conocer la estructura de los
datos que se almacenan, y ver qué métodos puede usar para manejar la informacion.

1.- Acceso a bases de datos desde PHP.

Caso practico

Carlos es nuevo en el mundo de la programacién web. Ademas, apenas ha trabajado con bases
de datos, por lo que se asombra de la gran diversidad de opciones que existen en PHP para trabajar
con datos almacenados en servidores de distintos tipos.

Algunos de los gestores sobre los que lee mientras revisa la documentacion de PHP los conoce, otros
simplemente le suenan, pero hay muchos de los que ni siquiera conocia su existencia. Sabe que
debe centrarse en el servidor MySQL, que es el que usaran para desarrollar la aplicacion, pero aun
asi el volumen de informacion disponible es tan grande que le cuesta decidirse por ddnde empezar.

Una de las aplicaciones mas frecuentes de PHP es generar un interface web para acceder y gestionar
la informacién almacenada en una base de datos. Usando PHP podemos mostrar en una pdgina web
informacién extraida de la base de datos, o enviar sentencias al gestor de la base de datos para que
elimine o actualice algunos registros.

PHP soporta mas de 15 sistemas gestores de bases de datos: SQLite, Oracle, SQL Server, PostgreSQL,
IBM DB2, MySQL, etc. Hasta la versién 5 de PHP, el acceso a las bases de datos se hacia
principalmente utilizando extensiones especificas para cada sistema gestor de base de datos
(extensiones nativas). Es decir, que si queriamos acceder a una base de datos de PostgreSQL,
deberiamos instalar y utilizar la extension de ese gestor en concreto. Las funciones y objetos a utilizar
eran distintos para cada extension.

A partir de la versién 5 de PHP se introdujo en el lenguaje una extensién para acceder de una forma
comun a distintos sistemas gestores: PDO. La gran ventaja de PDO estd clara: podemos seguir
utilizando una misma sintaxis aunque cambiemos el motor de nuestra base de datos. Por el
contrario, en algunas ocasiones preferiremos seguir usando extensiones nativas en nuestros
programas. Mientras PDO ofrece un conjunto comun de funciones, las extensiones nativas
normalmente ofrecen mas potencia (acceso a funciones especificas de cada gestor de base de datos)
y en algunos casos también mayor velocidad.

De los distintos SGBD existentes, vas a aprender a utilizar MySQL. MySQL es un gestor de bases de
datos relacionales de cddigo abierto bajo licencia GNU GPL. Es el gestor de bases de datos mas
empleado con el lenguaje PHP. Como ya vimos, es la letra "M" que figura en los acronimos AMP y
XAMPP.

En esta unidad vas a ver cémo acceder desde PHP a bases de datos MySQL utilizando tanto PDO
como la extension nativa MySQLi. Previamente verds una pequefia introduccién al manejo de MySQL,
aunque para el seguimiento de esta unidad se supone que conoces el lenguaje SQL utilizado en la
gestion de bases de datos relacionales.

Disefio Web Entorno Servidor DAW

Ademds, para el acceso a las funcionalidades de ambas extensiones deberas utilizar objetos. Aunque
mas adelante verds todas las caracteristicas que nos ofrece PHP para crear programas orientados a
objetos, debemos suponer también en este punto un cierto conocimiento de programacién
orientada a objetos. Basicamente, debes saber cdmo crear y utilizar objetos.

En PHP se utiliza la palabra new para crear un nuevo objeto instanciando una clase:
Sa = new A();

Y para acceder a los miembros de un objeto, debes utilizar el operador flecha ->:
Sa->fecha() ;

Caracteristicas basicas de la utilizacion de objetos en PHP

La programacion orientada a objetos es una metodologia de programacién avanzada y bastante
extendida, en la que los sistemas se modelan creando clases, que son un conjunto de datos y
funcionalidades. Las clases son definiciones, a partir de las que se crean objetos. Los objetos son
ejemplares de una clase determinada y como tal, disponen de los datos y funcionalidades definidos
en la clase.

La programacién orientada a objetos permite concebir los programas de una manera bastante
intuitiva y cercana a la realidad. La tendencia es que un mayor nimero de lenguajes de programacion
adopten la programacién orientada a objetos como paradigma para modelizar los sistemas. Prueba
de ello es la nueva versidon de PHP (5), que implanta la programacion de objetos como metodologia
de desarrollo. También Microsoft ha dado un vuelco hacia la programacién orientada a objetos, ya
que .NET dispone de varios lenguajes para programar y todos orientados a objetos.

Asi pues, la programacion orientada a objetos es un tema de gran interés, pues es muy utilizada y
cada vez resulta mas esencial para poder desarrollar en casi cualquier lenguaje moderno. En este
articulo vamos ver algunas nociones sobre la programacién orientada a objetos en PHP. Aunque es
un tema bastante amplio, novedoso para muchos y en un principio, dificil de asimilar, vamos a tratar
de explicar la sintaxis basica de PHP para utilizar objetos, sin meternos en mucha teoria de
programacion orientada a objetos en general.

Las clases: class

Una clase es un conjunto de variables, llamados atributos, y funciones, llamadas métodos, que
trabajan sobre esas variables. Las clases son, al fin y al cabo, una definicidon: una especificacion de
propiedades y funcionalidades de elementos que van a participar en nuestros programas.

Por ejemplo, la clase "Caja" tendria como atributos caracteristicas como las dimensiones, color,
contenido y cosas semejantes. Las funciones o métodos que podriamos incorporar a la clase "caja"
son las funcionalidades que deseamos que realice la caja, como introduce (), muestra contenido (),

comprueba si cabe(), vaciate()...

Las clases en PHP se definen de la siguiente manera:

<?
class Cajaf
var $alto;
var $ancho;
var $largo;
var $contenido;
var $color;

function introduce ($cosa) {
Sthis->contenido = $cosa;

}

Trabajar con bases de datos en PHP Tema 3

function muestra contenido () {
echo $this->contenido;

}

En este ejemplo se ha creado la clase Caja, indicando como atributos el ancho, alto y largo de la caja,
asi como el color y el contenido. Se han creado, para empezar, un par de métodos, uno para
introducir un elemento en la caja y otro para mostrar el contenido.

Si nos fijamos, los atributos se definen declarando unas variables al principio de la clase. Los métodos
se definen declarando funciones dentro de la clase. La variable sthis, utilizada dentro de los
métodos la explicaremos un poco mas abajo.

Utilizar la clase

Las clases solamente son definiciones. Si queremos utilizar la clase tenemos que crear un ejemplar de
dicha clase, lo que corrientemente se le llama instanciar un objeto de una clase.

Smicaja = new Caja;

Con esto hemos creado, o mejor dicho, instanciado, un objeto de la clase Caja llamado $micaja.

Smicaja->introduce ("algo") ;
Smicaja->muestra_ contenido () ;

Con estas dos sentencias estamos introduciendo "a1gc" en la caja y luego estamos mostrando ese
contendido en el texto de la pagina. Nos fijamos que los métodos de un objeto se llaman utilizando el
codigo "->".

nombre del objeto->nombre de metodo ()

Para acceder a los atributos de una clase también se accede con el cdédigo "->". De esta forma:

nombre del objeto->nombre del atributo

La variable $this

Dentro de un método, la variable sthis hace referencia al objeto sobre el que invocamos el método.
En la invocacién smicaja->introduce ("algo") se estd llamando al método introduce sobre el objeto
smicaja. Cuando se estd ejecutando ese método, se vuelca el valor que recibe por parametro en el
atributo contenido. En ese caso sthis->contenido hace referencia al atributo contenido del objeto
smicaja, que es sobre el que se invocaba el método.

Constructores

Los constructores son funciones, o métodos, que se encargan de realizar las tareas de inicializacién
de los objetos al ser instanciados. Es decir, cuando se crean los objetos a partir de las clases, se llama
a un constructor que se encarga de inicializar los atributos del objeto y realizar cualquier otra tarea
de inicializacién que sea necesaria.

No es obligatorio disponer de un constructor, pero resultan muy utiles y su uso es muy habitual. En el
ejemplo de la caja, que comentdbamos anteriormente, lo normal seria inicializar las variables como
color o las relacionadas con las dimensiones y, ademads, indicar que el contenido de la caja esta vacio.
Si no hay un constructor no se inicializan ninguno de los atributos de los objetos.

Disefio Web Entorno Servidor DAW

El constructor se define dentro de la propia clase, como si fuera otro método. El Unico detalle es que
el constructor debe tener el mismo nombre que la clase. Atentos a PHP, que diferencia entre
mayusculas y minusculas. A partir de la versidon de PHP 5, para definir métodos constructores, el
constructor de la clase puede llamarse _ construct(). Se permiten las dos formas por temas de
compatibilidad con versiones anteirores. A partir de PHP 7 es obligatorio usar __construct.

Para la clase Caja definida anteriormente, se podria declarar este constructor:

// function _ construct ($alto=1, $ancho=1, $largo=1, $color="negro") {

function Caja($alto=1, $Sancho=1,$largo=1, Scolor="negro") {
Sthis->alto=$alto;
$Sthis->ancho=$ancho;
Sthis->largo=$largo;
Sthis->color=$color;
Sthis->contenido="";

En este constructor recibimos por parametro todos los atributos que hay que definir en una caja.

Es muy util definir unos valores por defecto en los parametros que recibe el constructor, igualando el
pardmetro a un valor dentro de la declaracion de pardmetros de la funcién constructora, pues asi,
aunque se llame al constructor sin proporcionar parametros, se inicializara con los valores por
defecto que se hayan definido.

Es importante sefalar que en los constructores no se tienen por qué recibir todos los valores para
inicializar el objeto. Hay algunos valores que pueden inicializarse a vacio o a cualquier otro valor fijo,
como en este caso el contenido de la caja, que inicialmente hemos supuesto que estara vacia.

Trabajar con bases de datos en PHP Tema 3

2.- MySQL.

Caso practico

Juan y Carlos deciden comenzar revisando el servidor que van a utilizar, MySQL. Aunque van a
utilizar un servidor que ya esta en funcionamiento, deben comprender sus capacidades y las
herramientas de las que disponen para poder gestionar tanto el servidor como los datos que
almacena.

Maria conoce bien MySQL y les orienta sobre los pasos
necesarios para instalarlo y configurarlo. Con su ayuda y con el
permiso de Esteban, hacen una copia a algunos de los datos que
necesitan, y los replican en un servidor local para poder trabajar

con ellos. Por supuesto, se aseguran de no utilizar para las
pruebas informacién sensible como la de los clientes o ! I

proveedores, que pueda ocasionarles problema legales.

MySQL es un sistema gestor de bases de datos (SGBD) relacionales. Es un programa de cddigo
abierto que se ofrece bajo licencia GNU GPL, aunque también ofrece una licencia comercial en caso
de que quieras utilizarlo para desarrollar aplicaciones de cédigo propietario. En las Ultimas versiones
(a partir de la 5.1), se ofrecen, de hecho, varios productos distintos: uno de cédigo libre (Community
Edition), y otro u otros comerciales (Standard Edition, Enterprise Edition).

Incorpora multiples motores de almacenamiento, cada uno con caracteristicas propias: unos son mas
veloces, otros, aportan mayor seguridad o mejores capacidades de busqueda. Cuando crees una base
de datos, puedes elegir el motor en funcidn de las caracteristicas propias de la aplicacién. Si no lo
cambias, el motor que se utiliza por defecto se llama myzsam, que es muy rdpido pero a cambio no

contempla integridad referencial (caracterfstica de las bases de datos que permite crear relaciones vdlidas entre dos registros
de la misma o de diferentes tablas, y definir las operaciones necesarias para mantener la validez de las relaciones cuando se borra o

modifica alguno de los registros) ni tablas transaccionales (conjunto de operaciones sobre los datos que se han de realizar de
forma conjunta, una sola vez, e independientemente del resto de manipulaciones sobre los datos. Toda transaccion debe cumplir cuatro

propiedades: atomicidad, consistencia, aislamiento y permanencia). El motor InnoDB €s un poco mas lento pero si
soporta tanto integridad referencial como tablas transaccionales.

MySQL se emplea en muiltiples aplicaciones web, ligado en la mayor parte de los casos al lenguaje
PHP y al servidor web Apache. Utiliza SQL para la gestion, consulta y modificacién de la informacion

almacenada. Soporta la mayor parte de las caracteristicas de ANSI SQL 99 (revisién del esténdar ANSI SQL del
afio 1999, que agrega a la revision anterior (SQL2 o SQL 92) disparadores, expresiones regulares, y algunas caracteristicas de orientacion a

objetos), y afiade ademds algunas extensiones propias.

http://dev.mysql.com/doc/refman/5.0/es/index.html

Trabajar con bases de datos en PHP Tema 3

3.- Utilizacion de bases de datos MySQL en PHP.

Caso practico

Entre Maria, Juan y Carlos, han creado una pequefia base de datos con cuatro tablas y unas
decenas de registros que usaran en las pruebas de la nueva aplicacion web.

Juan, que ha tenido cierta experiencia programando aplicaciones en PHP, se da cuenta que el
lenguaje ha evolucionado mucho en los Udltimos tiempos. Y uno de los aspectos que mas ha
evolucionado es precisamente el que concierne al acceso a bases de datos MySQL.

En las aplicaciones que habia realizado hace ya algunos afios, siempre habia utilizado la misma
extension. Y ahora, por lo que ha estado viendo, existen otras maneras mas eficientes o mas
genéricas de llevar a cabo esa tarea.

Para estar seguro, busca consejo en algunos programadores amigos Yy llega a una conclusion:
tendra que escoger entre una extension nativa, MySQLI, y PDO. Revisa la documentaciéon sobre
ambas y realiza un pequefio estudio comparativo. Ademas, disefia unas pruebas para llevar a cabo
con la ayuda de Carlos y poder tomar una decision. Siempre es mejor asegurarse antes de empezar,
aunque eso implique alargar algo mas los plazos.

Como ya viste, existen dos formas de comunicarse con una base de datos desde PHP: utilizar una
extensién nativa programada para un SGBD concreto, o utilizar una extensién que soporte varios
tipos de bases de datos. Tradicionalmente las conexiones se establecian utilizando la extensidn
nativa mysql. Esta extensién se mantiene en la actualidad para dar soporte a las aplicaciones ya
existentes que la utilizan, pero no se recomienda utilizarla para desarrollar nuevos programas. Lo
mas habitual es elegir entre MySQLi (extension nativa) y PDO.

Con cualquiera de ambas extensiones, podras realizar acciones sobre las bases de datos como:
Establecer conexiones.

Ejecutar sentencias SQL.

Obtener los registros afectados o devueltos por una sentencia SQL.

Emplear transacciones.

Ejecutar procedimientos almacenados.

Gestionar los errores que se produzcan durante la conexion o en el establecimiento de la misma.

AN N NN

PDO y MySQLi (y también la antigua extension mysql) utilizan un driver de bajo nivel para
comunicarse con el servidor MySQL. Hasta hace poco el Unico driver disponible para realizar esta
funcién era libmysql, que no estaba optimizado para ser utilizado desde PHP. A partir de la version
5.3, PHP viene preparado para utilizar también un nuevo driver mejorado para realizar esta funcién,
el Driver Nativo de MySQL, mysqlnd.

3.1.- Extension MySQLi.

Esta extension se desarrolld para aprovechar las ventajas que

@
ofrecen las versiones 4.1.3 y posteriores de MySQL, y viene
incluida con PHP a partir de la version 5. Ofrece un interface de m S ’
programaciéon dual, pudiendo accederse a las funcionalidades

de la extension utilizando objetos o funciones de forma
indiferente. Por ejemplo, para establecer una conexion con un servidor MySQL y consultar su
version, podemos utilizar cualquiera de las siguientes formas:

// utilizando constructores y métodos de la programacidén orientada a objetos
Sconexion = new mysqli('localhost', 'usuario', 'contrasefia', 'base de datos');
print conexion->server info;

// utilizando llamadas a funciones
Sconexion = mysqli connect ('localhost', 'usuario', 'contrasefia', 'base de datos');
print mysqgli get server info ($Sconexion);

En ambos casos, la variable sconexion es de tipo objeto. La utilizacidn de los métodos y propiedades
que aporta la clase mysqli normalmente produce un cédigo mas corto y legible que si utilizas
llamadas a funciones.

-15-

Disefio Web Entorno Servidor DAW

Toda la informacidn relativa a la instalacion y utilizacion de la extensién, incluyendo las
funciones y métodos propios de la extension, se puede consultar en el manual de PHP.
http://es.php.net/manual/es/book.mysqli.php

Entre las mejoras que aporta a la antigua extensidon mysq|, figuran:
Interface orientado a objetos.

Soporte para transacciones.

Soporte para consultas preparadas.

Mejores opciones de depuracion.

DN NI AN

Como ya viste en la primera unidad, las opciones de configuracion de PHP se almacenan en el fichero

php.ini. En este fichero hay una seccién especifica para las opciones de configuracion propias de

cada extension. Entre las opciones que puedes configurar para la extension MySQLi estan:

v mysqli.allow persistent. Permite crear conexiones persistentes.

v mysqli.default port. NUmero de puerto TCP predeterminado a utilizar cuando se conecta al
servidor de base de datos.

v mysqli.reconnect. Indica si se debe volver a conectar automaticamente en caso de que se pierda
la conexion.

v mysqli.default host. Host predeterminado a usar cuando se conecta al servidor de base de
datos.

v mysqli.default user. Nombre de usuario predeterminado a usar cuando se conecta al servidor
de base de datos.

v mysqli.default pw. Contrasefia predeterminada a usar cuando se conecta al servidor de base de
datos.

3.1.1.- Establecimiento de conexiones.

Para poder comunicarte desde un programa PHP con un servidor MySQL, el

primer paso es establecer una conexién. Toda comunicacidén posterior que tenga

lugar, se hara utilizando esa conexion.

Si utilizas la extension MySQLi, establecer una conexién con el servidor significa m h‘
crear una instancia de la clase mysqli. El constructor de la clase puede recibir seis ysq
pardmetros, todos opcionales, aunque lo mds habitual es utilizar los cuatro primeros:

El nombre o direccidn IP del servidor MySQL al que te quieres conectar.

Un nombre de usuario con permisos para establecer la conexidn.

La contrasefia del usuario.

El nombre de la base de datos a la que conectarse.

El nimero del puerto en que se ejecuta el servidor MySQL.

El socket o la tuberia con nombre (named pipe) a usar.

ANANE NN

Si utilizas el constructor de la clase, para conectarte a la base de datos "dwes" puedes hacer:

// utilizando el constructor de la clase
Sdwes = new mysqgli ('localhost', 'dwes', 'abcl23.', 'dwes');

Aungue también tienes la opcidn de primero crear la instancia, y después utilizar el método connect

para establecer la conexién con el servidor:

// utilizando el método connect
Sdwes = new mysqli () ;
Sdwes->connect ('localhost', 'dwes', 'abcl23.', 'dwes'):;

Por el contrario, utilizando el interface procedimental de la extensién:

// utilizando llamadas a funciones
Sdwes = mysgli connect ('localhost', 'dwes', 'abcl23.', 'dwes');

-16 -

http://es.php.net/manual/es/book.mysqli.php
http://es2.php.net/manual/es/mysqli.configuration.php

Trabajar con bases de datos en PHP Tema 3

Es muy importante el control y gestion de los errores devueltos por el servidor de Base de Datos. El
comportamiento predeterminado del manejo de errores la MySQLi ha cambiado a partir de la
version 8.1 de PHP.
a) En versiones de PHP anteriores a la 8.1, silenciaba los errores de MySQL por
pantalla y los almacenaba en las propiedades de de error de la clase
(connect_errno, connect_error, errno y error)
Por ejemplo, el siguiente cddigo comprueba el establecimiento de una conexién con la base de datos
"awes" y finaliza la ejecucion si se produce algun error:

@ $dwes = new mysqgli ('localhost', 'dwes', 'abcl23.', 'dwes');

Serror = $dwes->connect errno;

if (Serror !'= 0) {
echo "<p>Error S$error conectando a la base de datos: $dwes->connect error</p>";
exit ()

}

b) En versiones de PHP posteriores a la 8.1, MySQLi genera una excepcion automaticamente
cuando el servidor de BD devuelve un error.

tryf
Sdwes = new mysqgli('localhost', 'dwes', 'abcl23.', 'dwes');
} catch (Exception $ex) {
die ($ex->getMessage ()) ;

}

El modo por defecto a partir de PHP 8.1 esta establecido como:
mysqli_report(MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT);

Para trabajar sin excepciones, hay que cambiar el modo por defecto a:
mysqli_report(MYSQLI_REPORT_OFF);

En PHP, como veremos posteriormente con mas detalle, puedes anteponer a cualquier

expresion el operador de control de errores @ para que se ignore cualquier posible error

gue pueda producirse al ejecutarla.
http://es.php.net/manual/es/language.operators.errorcontrol.php

Si una vez establecida la conexién, quieres cambiar la base de datos puedes usar el método
select_db (0 la funcidn mysqli_select db de forma equivalente) para indicar el nombre de la nueva.

// utilizando el método connect
Sdwes->select db('otra bd');

Una vez finalizadas las tareas con la base de datos, utiliza el método cilose (0 la funcidn
mysqli_close) para cerrar la conexidn con la base de datos y liberar los recursos que utiliza.
Sdwes->close () ;

Para asegurarnos que los datos obtenidos desde el servidor tienen la codificacién UTF-8,

podemos ejecutar después de la conexién: Sdwes->set_charset('utf8mb4');

3.1.2.- Ejecucion de consultas.

La forma mas inmediata de ejecutar una consulta, si utilizas esta extensién, es el
método query, equivalente a la funcidn mysqli_query. Si se ejecuta una consulta de
accion que no devuelve datos (como una sentencia SQL de tipo UPDATE, INSERT O ysqh'
peLeTE), la llamada devuelve true si se ejecuta correctamente o false en caso
contrario. El numero de registros afectados se puede obtener con la propiedad

affected rows (O con la funcién mysqli_affected_rows).
@ $dwes = new mysqgli('localhost', 'dwes', 'abcl23.', 'dwes');
Serror = $dwes->connect errno;
if (Serror == 0) {
Sresultado = $dwes->query ('DELETE FROM stock WHERE unidades=0"');
if ($resultado) {

-17 -

http://es.php.net/manual/es/language.operators.errorcontrol.php

Disefio Web Entorno Servidor DAW

print "<p>Se han borrado $dwes->affected rows registros.</p>";

}

$dwes->close () ;
}
En el caso de ejecutar una sentencia SQL que si devuelva datos (como un seLecT), éstos se devuelven
en forma de un objeto resultado (de la clase mysqli result). En el punto siguiente verds como se
pueden manejar los resultados obtenidos.

El método query tiene un parametro opcional que afecta a cdmo se obtienen internamente los

resultados, pero no a la forma de utilizarlos posteriormente. En la opcién por defecto,

MYSQLI STORE RESULT, los resultados se recuperan todos juntos de la base de datos y se almacenan de

forma local. Hasta que no estadn todos recuperados no se podran leer. Si cambiamos esta opcidén por
el valor mysoLz use Rresurr, los datos se van recuperando del servidor segun se vayan necesitando, es
decir, el recurso se podrd leer aunque todavia no se haya rellenado entero.

Sresultado = $dwes->query ('SELECT producto, unidades FROM stock', MYSQLI USE RESULT) ;

Otra forma que puedes utilizar para ejecutar una consulta es el método real_query (o la
funciéon mysqli_real_query), que siempre devuelve true o false segin se haya ejecutado
correctamente o no. Si la consulta devuelve un conjunto de resultados, se podran recuperar
de forma completa utilizando el método store_result, o segin vaya siendo necesario gracias
al método use_result.
http://es.php.net/manual/es/mysqli.real-query.php

Es importante tener en cuenta que los resultados obtenidos se almacenaran en memoria mientras
los estés usando. Cuando ya no los necesites, los puedes liberar con el método free de la clase
mysqli result (O con la funcién mysqli_free_result)l

Sresultado->free () ;

if (Smysqli->query('SELECT Name FROM City ORDER BY ID LIMIT 20, 5')) {
do{
if (Sresult = Smysqli->use_result()) {
while (Srow = Sresult->fetch_row()) {
printf("%s\n", Srow[0]);

}
Sresult->close();
}
if (Smysqli->more_results())
printf("'----------n------ \n");

} while (Smysgqli->next_result());
}

3.1.3.- Transacciones.

Como ya comentamos, si necesitas utilizar transacciones deberds asegurarte de que estén
soportadas por el motor de almacenamiento que gestiona tus tablas en MySQL. Si utilizas X, por
defecto cada consulta individual se incluye dentro de su propia transaccion. Puedes gestionar este
comportamiento con el método autocommit (funcion mysqli autocommit).

Sdwes->autocommit (false) ; // deshabilitamos el modo transaccional automdtico

Al deshabilitar las transacciones automaticas, las siguientes operaciones sobre la base de datos

iniciardn una transaccion que deberds finalizar utilizando:

V" commit (0 la funcidn mysqli commit). Realizar una operaciéon "commit" de la transaccion actual,
devolviendo true si se ha realizado correctamente o ralse en caso contrario.

v rollback (0 la funcidén mysqli rollback). Realizar una operacién "rollvack" de la transaccion
actual, devolviendo true si se ha realizado correctamente o false en caso contrario.

Sdwes->query ('DELETE FROM stock WHERE unidades=0'); // Inicia una transaccién
Sdwes->query ('UPDATE stock SET unidades=3 WHERE producto="STYLUSSX515W"");

Sdwes->commit (); // Confirma los cambios

-18 -

http://es.php.net/manual/es/mysqli.real-query.php

Trabajar con bases de datos en PHP Tema 3

Una vez finalizada esa transaccion, comenzara otra de forma automatica.

Las consultas "query" y el commit deben ir dentro del try, y el rollback en el catch. Si las dos
instrucciones estdn correctas se hace el commit, si alguna de ellas fallas, saltaria la excepcién y
se ejecutaria el rollback.

Segun la informacion que figura en la tabla stock de la base de datos dwes, la tienda 1
(CENTRAL) tiene 2 unidades del producto de cdodigo 3DSNG y la tienda 3 (SUCURSAL2)
ninguno. Suponiendo que los datos son esos (no hace falta que los compruebes en el
codigo), utiliza una transaccién para mover una unidad de ese producto de la tienda 1 a la
tienda 3.

Deberas hacer una consulta de actualizacion (para poner unidades=1 en la tienda 1) y otra
de insercion (pues no existe ningun registro previo para la tienda 3).

Comprueba que se ejecuta bien solo la primera vez, pues en ejecuciones

posteriores ya no es posible insertar la misma fila en la tabla.

En el modo de gestion de transacciones que se utiliza por defecto, ¢es posible revertir los
cambios que se aplican al ejecutar una consulta de accion?
r‘ No o Si

-19-

Disefio Web Entorno Servidor DAW

3.1.4.- Obtencion y utilizacion de conjuntos de resultados.

Ya sabes que al ejecutar una consulta que devuelve datos obtienes un objeto de la clase
mysqli_result. Esta clase sigue los criterios de ofrecer un interface de programacién dual, es decir,
una funcidn por cada método con la misma funcionalidad que éste.

Para trabajar con los datos obtenidos del servidor, tienes varias posibilidades:
fetch array (funcidn mysqli fetch array). Obtiene un registro completo del conjunto de resultados
y lo almacena en un array. Por defecto el array contiene tanto claves numéricas como asociativas.

Por ejemplo, para acceder al primer campo devuelto, podemos utilizar como clave el nimero 0 o su

nombre indistintamente.
Sresultado = $dwes->query ('SELECT producto, unidades FROM stock WHERE unidades<2');

$stock = Sresultado->fetch array(); // Obtenemos el primer registro
Sproducto = $stock['producto']l; // O también S$stock[O0];
Sunidades = $stock['unidades']; // O también S$stock[l];

print "<p>Producto $producto: $unidades unidades.</p>";

Este comportamiento por defecto se puede modificar utilizando un parametro opcional, que puede

tomar los siguientes valores:

v mysorz_nuM. Devuelve un array con claves numéricas.

v wmysouLI_assoc. Devuelve un array asociativo.

v/ wmysoL1 sora. Es el comportamiento por defecto, en el que devuelve un array con claves
numeéricas y asociativas.

fetch assoc (funcidn mysqli fetch assoc). ldéntico a fetch array pasando como pardmetro
MYSQLI ASSOC.

fetch _row (funcidn mysqli fetch row).ldéntico a fetch array pasando como parametro MysoLI NuM.
fetch _object (funcidn mysqli fetch object). Similar a los métodos anteriores, pero devuelve un
objeto en lugar de un array. Las propiedades del objeto devuelto se corresponden con cada uno de
los campos del registro.

Parar recorrer todos los registros de un array, puedes hacer un bucle teniendo en cuenta que
cualquiera de los métodos o funciones anteriores devolvera nu11 cuando no haya mds registros en el

conjunto de resultados.

Sresultado = $dwes->query ('SELECT producto, unidades FROM stock WHERE unidades<2');
Sstock = S$resultado->fetch object();
while ($stock !'= null) { //while ($stock=$resultado->fetch objetct())

print "<p>Producto $stock->producto: $stock->unidades unidades.</p>";

Sstock = Sresultado->fetch object();

En el manual de PHP tienes mds informacidon sobre los métodos y propiedades de la clase
mysqgli result.

http://es.php.net/manual/es/class.mysqli-result.php

Crea una pdgina web en la que se muestre el stock existente de un determinado producto en
cada una de las tiendas. Para seleccionar el producto concreto utiliza un cuadro de seleccién
dentro de un formulario en esa misma pdgina, en el que se muestre el nombre de los
todos los productos que hay.

-20-

http://es.php.net/manual/es/class.mysqli-result.php

Trabajar con bases de datos en PHP

Tema 3

Ejercicio: Conjuntos de resultados en MySQLi

Producto: | Acer AX3950 15-650 4GB 1TB WTHP
Acer AX3950 15-650 4GB 1TB W7HP

Archos Clipper MP3 2GEB negro
StocK | ssus EEEPC 1005PXD N455 1 250 BL
Canon lxus 115HS azul
Tienda: ST Canon Legria F3306 plata
Canon Pixma IP4850
Canon Pixma MP252
Canon Powershot A3100 plata
Creative Zen MP4 8GB Style 300
Epson Stylus 5X515W
HP Laserjet Pro Wifi P1102W

Kingston DataTraveler 16GB DT101G2 USB2.0 negro
Kingsten DataTraveler G3 32GE rojo

Kingston MicroSDHC 8GB

Lector ebooks Papyret con SD2GEB + 500 ebooks

LG TDT HD 23 M237WDP-PC FULL HD

Nintendo 305 negro

Packard Bell 18103 23 13-550 4G 640GB NVIDIAG210
Pentax Optio LS1100

HP Mini 110-3120 10.1LED N455 1GB 250GB WTS negro

Ejercicio: Conjuntos de resultados en MySQLi

Producto: | Acer AX3950 15-650 4GB 1TB WTHP

Stock del producto en las tiendas:

Tienda: CENTEAL: 2 umdades

Tienda: SUCURSALL: 1 unidades

Mostrar stock

¥ || Mostrar stock

-21-

Disefio Web Entorno Servidor DAW

3.1.5.- Consultas preparadas.

Cada vez que se envia una consulta al servidor, éste debe analizarla antes de ejecutarla. Algunas
sentencias SQL, como las que insertan valores en una tabla, deben repetirse de forma habitual en un
programa. Para acelerar este proceso, MySQL admite consultas preparadas. Estas consultas se
almacenan en el servidor listas para ser ejecutadas cuando sea necesario.

Para trabajar con consultas preparadas con la extension MySQLi de PHP, debes utilizar la clase
mysqli_stmt. Utilizando el método stmt_init de la clase mysqli (o la funcion mysqli_stmt_init)
obtienes un objeto de dicha clase. También se puede hacer directamente usando el método

prepare(string Squery) de la clase MySQLi que devuelve ya el objeto de la clase mysqli_stmt.
Sdwes = new mysqgli ('localhost', 'dwes', 'abcl23.', 'dwes');

Los pasos que debes seguir para ejecutar una consulta preparada son:

v" Preparar la consulta en el servidor MySQL utilizando el método prepare (funcidn
mysqli_stmt_prepare)

v" Ejecutar la consulta, tantas veces como sea necesario, con el método execute (funcién
mysqli_stmt_execute)

v" Una vez que ya no se necesita mas, se debe ejecutar el método ciose (funcidn
mysqli_stmt_closey

Por ejemplo, para preparar y ejecutar una consulta que inserta un nuevo registro en la tabla familia:
Sstmt=$dwes->prepare (' INSERT INTO familia (cod, nombre) VALUES ("TABLET", "Tablet PC")');

Sstmt->execute () ;
Sstmt->close () ;
Sdwes->close () ;

El problema que ya habras observado, es que de poco sirve preparar una consulta de insercion de
datos como la anterior, si los valores que inserta son siempre los mismos. Por este motivo las

consultas preparadas admiten parametros. Para preparar una consulta con parametros, en lugar de

poner los valores debes indicar con un signo de interrogacion su posicién dentro de la sentencia SQL.
Sdwes->prepare ('INSERT INTO familia (cod, nombre) VALUES (?, ?)');

Y antes de ejecutar la consulta tienes que utilizar el método bind param (0 la funcidn
mysqli_stmt bind param) para sustituir cada pardmetro por su valor. El primer pardmetro del método
bind param €5 Una cadena de texto en la que cada caracter indica el tipo de un pardmetro, segun la
siguiente tabla.

Caracter. Tipo del parametro.
I Numero entero.
D. Numero real (doble precision).
S. Cadena de texto.
B. Contenido en formato binario (BLOB).

En el caso anterior, si almacenas los valores a insertar en sendas variables, puedes hacer:
$Sstmt=$dwes->prepare (' INSERT INTO familia (cod, nombre) VALUES (2, ?)'):;

$cod producto = "TABLET";
Snombre producto = "Tablet PC";
$stmt->bind param('ss', $cod producto, $nombre producto);

Sstmt->execute () ;
Sstmt->close () ;
Sdwes->close () ;

-22-

Trabajar con bases de datos en PHP Tema 3

Cuando uses bind param para enlazar los parametros de una consulta preparada con sus respectivos
valores, deberas usar siempre variables como en el ejemplo anterior. Si intentas utilizar literales, por
ejemplo:

$->bind param('ss', 'TABLET', 'Tablet PC'); // Genera un error

Obtendrds un error. El motivo es que los parametros del método bind param Se pasan por referencia.
Aprenderds a usar paso de parametros por referencia en una unidad posterior.

El método bind param permite tener una consulta preparada en el servidor MySQL y ejecutarla tantas
veces como quieras cambiando ciertos valores cada vez. Ademas, en el caso de las consultas que
devuelven valores, se puede utilizar el método bind result (funcidn mysqli_stmt bind result) para
asignar a variables los campos que se obtienen tras la ejecucidn. Utilizando el método fetch
(mysqli_stmt_fetch) se recorren los registros devueltos. Observa el siguiente cédigo:

$Sstmt=$dwes->prepare ('SELECT producto, producto, unidades FROM stock WHERE unidades<2');

$stmt->execute () ;

$stmt->bind result($producto, S$unidades);
while (Sstmt->fetch ()] {
print "<p>Producto $producto: $unidades unidades.</p>";
}
Sstmt->close () ;
Sdwes->close () ;

stmt=$dwes->prepare ('SELECT producto, producto, unidades FROM stock WHERE unidades<2');
stmt->execute () ;

$resultado=$stmt->get result();
while ($fila=$resultado->fetch object())

print "<p>Producto $fila->producto: $fila->unidades unidades</p>";
}

$stmt->close () ;
Sdwes->close () ;

En el manual de PHP tienes mas informacién sobre consultas preparadas y la clase
mysqli_stmt.
http://es.php.net/manual/es/class.mysqli-stmt.php

A partir de la pagina web obtenida en el ejercicio anterior, afade la opcién de modificar el
numero de unidades del producto en cada una de las tiendas. Utiliza una consulta preparada
para la actualizacion de registros en la tabla stock. No es necesario tener en cuenta las tareas
de insercidn (no existian unidades anteriormente) y borrado (si el nimero final de unidades
es cero).

En esta ocasidn es necesario crear un nuevo formulario en la pagina, en la seccion donde
se muestra el niumero de unidades por tienda. Cuando se envia ese formulario, hay que
preparar la consulta y ejecutarla una vez por cada registro de la tabla stock (una vez por
cada tienda en la que exista stock de ese producto).

-23-

http://es.php.net/manual/es/class.mysqli-stmt.php

Trabajar con bases de datos en PHP Tema 3

Ejercicio: Consultas preparadas en MySQLi

Producto: | Acer AX3950 15-650 4GB 1TB WIHP ¥ || Mostrar stock

Stock del producto en las tiendas:

Tienda: CEWNTEAL: 2 unidades
Tienda: SUCTURSALL: [utidades
Actualizar

3.2.- PHP Data Objects (PDO).

Si vas a programar una aplicacion que utilice como sistema P00
., . — — |

gestor de bases de datos MySQL, la extension MySQLi que gy
acabas de ver es una buena opcion. Ofrece acceso a todas las pdo_mysep
caracteristicas del motor de base de datos, a la vez que reduce [T = =
los tiempos de espera en la ejecucién de sentencias. o

| S— 1o ; — =]

T —— e

Sin embargo, si en el futuro tienes que cambiar el SGBD por otro
distinto, tendrds que volver a programar gran parte del cédigo de
la misma. Por eso, antes de comenzar el desarrollo, es muy
importante revisar las caracteristicas especificas del proyecto. En el caso de que exista la posibilidad,
presente o futura, de utilizar otro servidor como almacenamiento, deberas adoptar una capa de
abstraccién para el acceso a los datos. Existen varias alternativas como ODBC, pero sin duda la
opcién mas recomendable en la actualidad es PDO.

D ey

El objetivo es que si llegado el momento necesitas cambiar el servidor de base de datos, las
modificaciones que debas realizar en tu cédigo sean minimas. Incluso es posible desarrollar
aplicaciones preparadas para utilizar un almacenamiento u otro segun se indique en el momento de
la ejecucidén, pero éste no es el objetivo principal de PDO. PDO no abstrae de forma completa el
sistema gestor que se utiliza. Por ejemplo, no modifica las sentencias SQL para adaptarlas a las
caracteristicas especificas de cada servidor. Si esto fuera necesario, habria que programar una capa
de abstraccion completa.

-24 -

http://educacionadistancia.juntadeandalucia.es/cursos/file.php/596/moddata/scorm/3180/DWES03_CONT_R13_PDO_phpinfo.jpg

Disefio Web Entorno Servidor DAW

La extension PDO debe utilizar un driver o controlador especifico para el tipo de base de datos que se
utilice. Para consultar los controladores disponibles en tu instalacién de PHP, puedes utilizar la
informacidn que proporciona la funcién phpinfo.

PDO se basa en las caracteristicas de orientacion a objetos de PHP pero, al contrario que la extension
MySQLi, no ofrece un interface de programacion dual. Para acceder a las funcionalidades de la
extensién tienes que emplear los objetos que ofrece, con sus métodos y propiedades. No existen
funciones alternativas.

3.2.1.- Establecimiento de conexiones.

Para establecer una conexidn con una base de datos utilizando PDO, debes instanciar un objeto de la
clase PDO pasandole los siguientes parametros (solo el primero es obligatorio):

v~ Origen de datos (DSN). Es una cadena de texto que indica qué controlador se va a utilizar y a
continuacién, separadas por el caracter dos puntos, los pardmetros especificos necesarios por el
controlador, como por ejemplo el nombre o direccidn IP del servidor y el nombre de la base de
datos.

Nombre de usuario con permisos para establecer la conexion.

Contrasefia del usuario.

Opciones de conexidn, almacenadas en forma de array.

AN

Por ejemplo, podemos establecer una conexién con la base de datos 'dwes' creada anteriormente de

la siguiente forma:
Sdwes = new PDO('mysqgl:host=localhost;dbname=dwes', 'dwes', 'abcl23.');

Si como en el ejemplo, se utiliza el controlador para MySQL, los parametros especificos para utilizar
en la cadena DSN (separadas unas de otras por el caracter punto y coma) a continuacion del prefijo
mysql: son los siguientes:

host. Nombre o direccidn IP del servidor.

port. NUmero de puerto TCP en el que escucha el servidor.

dbname. Nombre de la base de datos.

unix_socket. Socket de MySQL en sistemas Unix.

AR

Si quisieras indicar al servidor MySQL utilice codificacion UTF-8 para los datos que se

transmitan, puedes usar una opcién especifica de la conexion:

Sopciones = array(PDO::MYSQL ATTR INIT COMMAND => "SET NAMES utf8mb4");
Sdwes = new PDO('mysgl:host=localhost;dbname=dwes', 'dwes', 'abcl23.', S$opciones);

Otra opcion para indicar al servidor MySQL que utilice codificacion UTF-8 para los
datos que se transmitan es indicarlo en el primer pardametro de la conexion:

Sdwes = new PDO ('mysqgl:host=localhost;dbname=dwes;charset=utf8mb4', 'dwes', 'abcl23.', $opciones);

En el manual de PHP puedes consultar mas informacién sobre los controladores existentes,
los parametros de las cadenas DSN y las opciones de conexion particulares de cada uno.
http://es.php.net/manual/es/pdo.drivers.php

Una vez establecida la conexidn, puedes utilizar el método getattribute para obtener informacion
del estado de la conexidn y setattribute para modificar algunos parametros que afectan a la misma.

Por ejemplo, para obtener la version del servidor puedes hacer:
Sversion = $dwes->getAttribute (PDO::ATTR SERVER VERSION) ;
print "Versién: $version";

Y si quieres por ejemplo que te devuelva todos los nombres de columnas en mayusculas:
$version = $dwes->setAttribute (PDO::ATTR_CASE, PDO::CASE_UPPER) ;

-25-

http://es.php.net/manual/es/pdo.drivers.php

Trabajar con bases de datos en PHP Tema 3

En el manual de PHP, las paginas de las funciones getAttribute y setAttribute te permiten

consultar los posibles parametros que se aplican a cada una.
http://es.php.net/manual/es/pdo.getattribute.php
http://es.php.net/manual/es/pdo.setattribute.php

3.2.2.- Ejecucidon de consultas.

Para ejecutar una consulta SQL utilizando PDO, debes diferenciar aquellas sentencias SQL que no
devuelven como resultado un conjunto de datos, de aquellas otras que si lo devuelven.

En el caso de las consultas de accidn, como 1INSERT, DELETE O UPDATE, €l método exec devuelve el

numero de registros afectados.

Sregistros = $dwes->exec ('DELETE FROM stock WHERE unidades=0") ;
print "<p>Se han borrado $registros registros.</p>";

Si la consulta genera un conjunto de datos, como es el caso de seLecT, debes utilizar el método

query, que devuelve un objeto de la clase ppostatement.

Sdwes = new PDO ("mysqgl:host=localhost;dbname=dwes", "dwes", "abcl23.");
Sresultado = $dwes->query ("SELECT producto, unidades FROM stock");

Por defecto PDO trabaja en modo "autocommit", esto es, confirma de forma automatica cada

sentencia que ejecuta el servidor. Para trabajar con transacciones, PDO incorpora tres métodos:

v beginTransaction. Deshabilita el modo "autocommit" y comienza una nueva transaccién, que
finalizard cuando ejecutes uno de los dos métodos siguientes.

v commit. Confirma la transaccion actual.

v rollback. Revierte los cambios llevados a cabo en la transaccién actual.

Una vez ejecutado un commit O UN rollback, S€ Volverd al modo de confirmacién automatica.

$Sok = true;

Sdwes->beginTransaction () ;

if ($dwes->exec ('DELETE ..'") == 0) S$ok = false;
if (Sdwes->exec ('UPDATE ..') == 0) $ok = false;

if (Sok) S$Sdwes->commit(); // Si todo fue bien confirma los cambios
else S$dwes->rollback(); // 'y si no, los revierte

El método "exec" puede devolver el valor booleano FALSE (cuando se produce un error), pero
también puede devolver un valor no booleano que se evalia como FALSE (Un 0). Hay que tener

cuidado y usar el operador === para evitar problemas, ya que si no se ve afectado ningln registro por
la sentencia SQL, devolverd 0 que se evalia como false.
if ($dwes->exec ('UPDATE ..') === FALSE) S$ok = false;

Ten en cuenta que no todos los motores soportan transacciones. Tal es el caso, como ya viste,
del motor MyISAM de MySQL. En este caso concreto, PDO ejecutarda el método beginTransaction
sin errores, pero naturalmente no serd capaz de revertir los cambios si fuera necesario ejecutar
un rollback.

Si se usan transacciones, las consultas "query" y el commit deben ir dentro del try, y el rollback en
el catch. Si las dos instrucciones estdn correctas se hace el commit, si alguna de ellas fallas,
saltaria la excepcion y se ejecutaria el rollback.

De una forma similar al anterior ejercicio de transacciones, utiliza PDO para repartir entre las
tiendas las tres unidades que figuran en stock del producto con cédigo PAPYRE62GB.

En esta ocasidn, para comprobar si los cambios se hacen correctamente en la base de
datos y confirmar la transaccidn, se revisa el nimero de registros afectados por la
ejecucion de las consultas. Comprueba que la segunda vez que intentas ejecutarlo no
actualizara los datos, tal y como sucedia en el ejercicio equivalente de la extensién
MysSQli.

-26-

http://es.php.net/manual/es/pdo.getattribute.php
http://es.php.net/manual/es/pdo.setattribute.php

Disefio Web Entorno Servidor DAW

3.2.3.- Obtencion y utilizacion de conjuntos de resultados.

Al igual que con la extension MySQLi, en PDO tienes varias posibilidades para tratar con el conjunto
de resultados devuelto por el método query. La mas utilizada es el método fetch de la clase
pDOStatement. ESte método devuelve un registro del conjunto de resultados, o false si ya no quedan
registros por recorrer.

Sdwes = new PDO ("mysgl:host=localhost;dbname=dwes", "dwes", "abcl23.");
Sresultado = $dwes->query ("SELECT producto, unidades FROM stock");
while (Sregistro = S$resultado->fetch()) {

echo "Producto ".Sregistro['producto'].": ".Sregistro['unidades']."
";

}

Por defecto, el método fetch genera y devuelve, a partir de cada registro, un array con claves

numéricas y asociativas. Para cambiar su comportamiento, admite un parametro opcional que puede

tomar uno de los siguientes valores:

v ppo::FETCH assoc. Devuelve solo un array asociativo.

v" ppo: :FETCH NuM. Devuelve solo un array con claves numéricas.

v ppo: :rFETCH BOTH. Devuelve un array con claves numéricas y asociativas. Es el comportamiento
por defecto.

v ppo: :FETCH 0BJ. Devuelve un objeto cuyas propiedades se corresponden con los campos del

registro.

Sdwes = new PDO ("mysgl:host=localhost;dbname=dwes", "dwes", "abcl23.");
Sresultado = $dwes->query ("SELECT producto, unidades FROM stock");

while (Sregistro = $resultado->fetch (PDO::FETCH OBJ)) {
echo "Producto ".S$registro->producto.": ".Sregistro->unidades."
";

}
v" ppo: :FETCH_Lazy. Devuelve tanto el objeto como el array con clave dual anterior.
v" ppo::FETCH BOUND. Devuelve true y asigna los valores del registro a variables, segin se indique
con el método bindcolumn. Este método debe ser llamado una vez por cada columna, indicando

en cada llamada el nimero de columna (empezando en 1) y la variable a asignar.

Sdwes = new PDO ("mysqgl:host=localhost;dbname=dwes", "dwes", "abcl23.");
Sresultado = $dwes->query ("SELECT producto, unidades FROM stock");
Sresultado->bindColumn (1, $producto);
Sresultado->bindColumn (2, S$Sunidades) ;
while (S$registro = $resultado->fetch (PDO::FETCH BOUND)) {

echo "Producto ".$producto.": ".Sunidades."
";

}

~ También se puede utilizar el método fetchObject() que obtiene la siguiente fila y la devuelve
como un objeto.

Modifica la pagina web que muestra el stock de un producto en las distintas tiendas,
obtenida en un ejercicio anterior utilizando MySQLi, para que use PDO. Omite la gestion de
errores, que veremos en el Ultimo punto de este tema.

-27 -

Trabajar con bases de datos en PHP Tema 3

3.2.4.- Consultas preparadas.

Al igual que con MySQLi, también utilizando PDO podemos preparar consultas parametrizadas en el
servidor para ejecutarlas de forma repetida. El procedimiento es similar e incluso los métodos a
ejecutar tienen practicamente los mismos nombres.

Para preparar la consulta en el servidor MySQL, deberds utilizar el método prepare de la clase PDO.
Este método devuelve un objeto de la clase ppostatement. LOs parametros se pueden marcar

utilizando signos de interrogacién como en el caso anterior.

Sdwes = new PDO ("mysqgl:host=localhost;dbname=dwes", "dwes", "abcl23.");
Sconsulta = S$dwes->prepare ('INSERT INTO familia (cod, nombre) VALUES (2, ?)');

O también utilizando pardmetros con nombre, precediéndolos por el simbolo de dos puntos.

Sdwes = new PDO ("mysqgl:host=localhost;dbname=dwes", "dwes", "abcl23.");
Sconsulta = $dwes->prepare ('INSERT INTO familia (cod, nombre) VALUES (:cod, :nombre)');

Antes de ejecutar la consulta hay que asignar un valor a los parametros utilizando el método
bindParam de la clase ppostatement. Si utilizas signos de interrogacién para marcar los pardmetros, el

procedimiento es equivalente al método bindcolumn que acabamos de ver.

$cod producto = "TABLET";

Snombre producto = "Tablet PC";
Sconsulta->bindParam(1l, $cod producto);
Sconsulta->bindParam (2, $nombre producto) ;

Si utilizas parametros con nombre, debes indicar ese nombre en la llamada a bindParam.

Sconsulta->bindParam(":cod", $cod producto);
Sconsulta->bindParam (" :nombre", S$nombre producto) ;

Tal y como sucedia con la extensién MySQLi, cuando uses bindparam para asignar los parametros de
una consulta preparada, deberas usar siempre variables como en el ejemplo anterior.

Una vez preparada la consulta y enlazados los pardametros con sus valores, se ejecuta la consulta

utilizando el método execute.
Sconsulta->execute () ;

Alternativamente, es posible asignar los valores de los pardmetros en el momento de ejecutar la
consulta, utilizando un array (asociativo o con claves numéricas dependiendo de la forma en que

hayas indicado los pardmetros) en la llamada a execute.

Sparametros = array(":cod" => "TABLET", ":nombre" => "Tablet PC");
Sconsulta->execute ($Sparametros) ;

Si la consulta preparada devuelve valores, estos se pueden extraer ejecutando después de execute()
los métodos fech() o fetchObject().

Puedes consultar la informacion sobre la utilizacion en PDO de consultas preparadas y la
clase PDOStatement en el manual de PHP.
http://es.php.net/manual/es/class.pdostatement.php

Modifica el ejercicio sobre consultas preparadas que realizaste con la extension MySQLi, el
gue modificaba el nimero de unidades de un producto en las distintas tiendas, para que
utilice ahora la extensiéon PDO.

Como puedes comprobar, para obtener la solucidn se puede aprovechar la mayoria del
cddigo existente en el ejercicio anterior.

-28-

