
Ejercicio1 

Crea tres arrays de cinco elementos: el primera de enteros, el segundo de double y el tercero 

de booleanos. Muestra las referencias en las que se encuentra cada uno de los arrays 

anteriores. 

Ejercicio 2 

Construye un array de 10 elementos del tipo que desees. Declara diferentes variables de array 

que referenciarán al array creado. Comprueba, imprimiendo por pantalla, que todas las 

variables contienen la misma referencia. 

Ejercicio 3 

Construye un array de 10 elementos, inserta valores en cada uno de ellos y redimensiónalo a 

un array de 11 elementos. Cuando lo redimensionamos, no queremos insertar los valores 

nuevos en el array de uno en uno. 

Ejercicio 4 

Crea un array de 10 elementos de enteros, dándole valor a cada uno de ellos, llamamos a una 

función que incremente todos los elementos en 5, llamamos a una función que imprima por 

pantalla el contenido del array (en ambas funciones, pasamos el array por parámetro). 

Ejercicio 5 

Crea un array de longitud 10 que se inicializará con números aleatorios comprendidos entre 1 y 

100. Mostrar la suma de todos los números aleatorios que se guardan en el array. 

Ejercicio 6 

Introduce por teclado un número n; a continuación, solicita al usuario que teclee n números. 

Realiza la media de los números positivos, la media de los negativos y cuenta el número de 

ceros introducidos. 

Ejercicio 7 

Diseñar un programa que solicite al usuario que introduzca por teclado 5 números decimales. A 

continuación, mostrar los números en el mismo orden que se han introducido. 

Ejercicio 8 

Escribir una aplicación que solicite el usuario cuántos números desea introducir. A 

continuación, introducir por teclado esa cantidad de números enteros, y por último, mostrar el 

orden inverso al introducido. 

Ejercicio 9 

Diseñar la función: int máximo(int t[]), que devuelve el máximo valor contenido en un array t. 

Ejercicio 10 

Escribir la función int [] rellenaPares(int longitud, int fin), que crea y devuelve un array 

ordenado de la longitud especificada, que se encuentra rellenado con números pares 

aleatorios comprendidos en el rango desde 2 hasta fin (inclusive). 

 



Ejercicio 11 

Escribe la función: int buscar(int t [], int clave), que busca de forma secuencial en el array t el 

valor clave. En caso de encontrarlo, devuelve en qué posición lo encuentra; y en caso contrario, 

devolverá -1. 

Ejercicio 12 

Definir una función que tome como parámetros dos arrays, el primero con los 6 números de 

una apuesta de la primitiva, y el segundo (ordenado) con los 6 números de la combinación 

ganadora. La función devolverá el número de aciertos. 

Ejercicio 13 

Implementar la función: int [] sinRepetidos(int t[]), que construye y devuelve un array de la 

longitud apropiada, con los elementos de t, donde se han eliminado los datos repetidos. 

Ejercicio 14 

Leer y almacenar n números enteros en un array, a partir del cual se construirán otros dos 

arrays con los elementos con valores pares e impares del primero, respectivamente. Los arrays 

pares e impares deben mostrarse ordenados. 

Ejercicio 15 

Escribe en una función el comportamiento de la inserción ordenada. 

Ejercicio 16 

Diseñar una aplicación para gestionar un campeonato de programación, donde se introduce la 

puntuación (enteros) obtenida por 5 programadores, conforme van terminando su prueba. La 

aplicación debe mostrar las puntuaciones ordenadas de los 5 participantes. En ocasiones, 

cuando finalizan los 5 participantes anteriores, se suman al campeonato programadores de 

exhibición, cuyos puntos se incluyen con el resto. La forma de especificar que no intervienen 

más programadores de exhibición es introducir como puntuación un -1. La aplicación debe 

mostrar, finalmente, los puntos ordenados de todos los participantes. 

Ejercicio 17 

Escribir la función: int[] eliminarMayores(int t[], int valor), que crea y devuelve una copia del 

array t donde se han eliminado todos los elementos que son mayores que valor. 

Ejercicio 18 

Crea una función que realice el borrado de un elemento de un array ordenado. 

Ejercicio 19 

El “número de la suerte” de una persona puede calcularse a partir de sus números favoritos. 

De entre estos, se seleccionan dos diferentes al azar, que se eliminarán de la lista, pero en su 

lugar se añade la media aritmética de los dos eliminados de la lista de números favoritos. El 

proceso se repite hasta que solo quede un número, que resultará el número de la suerte para 

esa persona. Para calcular bien el número de la suerte es imprescindible que la lista de 

números se encuentre siempre ordenada. Escribe una aplicación que solicite al usuario sus 

números favoritos y calcula su número de la suerte. 



Ejercicio 20 

Comprueba qué produce la comparación con el operador == de dos arrays del mismo tipo, la 

misma longitud y los mismos valores. 

Ejercicio 21 

Desarrollar el juego “la cámara secreta”, que consiste en abrir una cámara mediante su 

combinación secreta, que está formado por una combinación de dígitos del 1 al 5. El jugador 

especificará cuál es la longitud de la combinación; a mayor longitud, mayor será la dificultad 

del juego. La aplicación genera, de forma aleatoria, una combinación secreta que el usuario 

tendrá que acertar. En cada intento se muestra como pista, para cada dígito de la combinación 

introducido por el jugador, si es mayor, menor o igual que el correspondiente en la 

combinación secreta. 

Ejercicio 22 

Crear un array bidimensional de longitud 5x5 y rellenarlo de la siguiente forma: el elemento de 

la posición [n][m] debe contener el valor 10 x n + m. Después se debe mostrar su contenido. 


