
Píldora Formativa: Manejo de Excepciones en Java

Introducción

El manejo de excepciones es una herramienta fundamental en Java para garantizar que

nuestros programas puedan responder de manera adecuada a situaciones inesperadas.

Una excepción es un evento que interrumpe el flujo normal de la ejecución de un programa

y ocurre debido a condiciones que el programa no puede manejar directamente, como un

intento de dividir por cero,

acceder a un índice fuera de los límites de un array o tratar de abrir un archivo inexistente.

Esta guía cubrirá las definiciones esenciales, ejemplos prácticos y buenas prácticas para

trabajar con excepciones en Java.

1. ¿Qué son las Excepciones?

Una excepción es un objeto que representa un error o un comportamiento anómalo que

ocurre durante la ejecución de un programa. Cuando una excepción ocurre, Java crea un

objeto que contiene información sobre el error y detiene el flujo normal del programa, a

menos que el programador haya preparado código para manejarla.

Las excepciones se generan de dos maneras principales:

- Por el propio entorno de ejecución de Java (Runtime Environment).

- Manualmente, mediante la palabra clave `throw`.

 Tipos de Excepciones

1. Checked Exceptions (Excepciones verificadas):

 - Son detectadas en tiempo de compilación. El programador debe manejar estas

excepciones obligatoriamente usando bloques `try-catch` o declarándolas en el encabezado

del método con la palabra clave `throws`.

 - Ejemplo: `IOException`, `SQLException`.

2. Unchecked Exceptions (Excepciones no verificadas):

 - Son detectadas en tiempo de ejecución. No es obligatorio manejarlas, pero es buena

práctica hacerlo si se pueden anticipar.

 - Ejemplo: `NullPointerException`, `ArithmeticException`.

3. Errores (`Error`):

 - Representan problemas graves relacionados con el entorno de ejecución, como falta de

memoria o desbordamiento de pila. Por lo general, no se manejan directamente.

 - Ejemplo: `StackOverflowError`, `OutOfMemoryError`.

2. Manejo de Excepciones en Java

El manejo de excepciones en Java se realiza mediante los bloques `try`, `catch`, y `finally`.

Estas palabras clave permiten capturar y gestionar situaciones excepcionales de forma

controlada.

Bloque `try-catch`

El bloque `try` contiene el código que puede generar una excepción, mientras que el bloque

`catch` maneja el tipo específico de excepción que se produce.

Bloque `finally`

El bloque `finally` se ejecuta siempre, independientemente de si ocurre una excepción o no.

Es útil para liberar recursos, cerrar archivos o limpiar código.

3. Lanzar Excepciones

El programador puede generar (lanzar) una excepción manualmente utilizando la palabra

Alejandro
Rectángulo

clave `throw`. Además, los métodos pueden declarar que lanzan excepciones utilizando

`throws`.

 Ejemplo con `throws`:

public static int dividir(int numerador, int denominador) throws ArithmeticException {

 if (denominador == 0) {

 throw new ArithmeticException("No se puede dividir por cero");

 }

 return numerador / denominador;

}

4. Crear Excepciones Personalizadas

Es posible definir nuestras propias excepciones extendiendo la clase `Exception` o

`RuntimeException`.

public class MiExcepcion extends Exception {

 public MiExcepcion(String mensaje) {

 super(mensaje);

 }

}

5. Principales Excepciones en Java

Java proporciona una amplia gama de excepciones predefinidas en su biblioteca estándar. Aquí

tienes algunas de las más comunes:

Excepciones Comunes

Alejandro
Rectángulo

Alejandro
Rectángulo

1. ArithmeticException: Ocurre cuando se realiza una operación matemática inválida,

como dividir por cero.

o Ejemplo: int resultado = 10 / 0;

2. NullPointerException: Se lanza cuando se intenta acceder a un objeto que es null.

o Ejemplo: String texto = null; texto.length();

3. ArrayIndexOutOfBoundsException: Se lanza cuando se intenta acceder a un índice

fuera de los límites de un array.

o Ejemplo: int[] numeros = {1, 2, 3};

System.out.println(numeros[5]);

4. ClassCastException: Se lanza cuando se intenta convertir un objeto de una clase a otra

clase incompatible.

o Ejemplo: Object obj = new Integer(10); String str =

(String) obj;

5. InputMismatchException: Ocurre cuando el tipo de dato proporcionado no coincide con

el esperado.

o Ejemplo: Scanner scanner = new Scanner(System.in);

int numero = scanner.nextInt(); // Introducir texto en

lugar de un número.

6. IOException: Representa un error relacionado con la entrada y salida de datos, como

problemas al leer un archivo.

o Ejemplo: FileReader reader = new

FileReader("archivo_inexistente.txt");

7. FileNotFoundException: Una subclase de IOException, ocurre cuando no se

encuentra un archivo especificado.

o Ejemplo: new FileInputStream("archivo.txt");

8. NumberFormatException: Se lanza cuando se intenta convertir una cadena en un

número, pero la cadena no tiene un formato válido.

o Ejemplo: int numero = Integer.parseInt("texto");

9. IllegalArgumentException: Indica que un argumento pasado a un método no es

apropiado.

o Ejemplo: Thread.sleep(-100); // Tiempo negativo

10. IllegalStateException: Se lanza cuando el estado de un objeto no permite la operación

solicitada.

• Ejemplo: Scanner scanner = new Scanner(System.in);

scanner.close(); scanner.next();

7. Manejo de la Pila de Excepciones

¿Qué es el Stack Trace?

La pila de excepciones, o stack trace, es una representación jerárquica del flujo de métodos que

se ejecutaron antes de que ocurriera una excepción. Esta información es crucial para depurar

programas, ya que muestra:

1. El tipo de excepción lanzada.

2. El mensaje asociado a la excepción.

3. El rastro de métodos llamados antes del error.

Cuando ocurre una excepción, Java automáticamente genera el stack trace. Este puede

visualizarse mediante los métodos:

• Throwable.printStackTrace(): Imprime la pila de excepciones en la consola.

• Throwable.getStackTrace(): Devuelve un array con el rastro de la pila para análisis

programático.

Ejemplo de Uso del Stack Trace

public class StackTraceEjemplo {

 public static void main(String[] args) {

 try {

 metodo1();

 } catch (Exception e) {

 System.out.println("Se capturó una excepción: " + e.getMessage());

 System.out.println("Rastro de la pila:");

 e.printStackTrace();

 }

 }

 public static void metodo1() {

 metodo2();

 }

 public static void metodo2() {

 throw new RuntimeException("Error simulado");

 }

}

Salida:

Se capturó una excepción: Error simulado

Rastro de la pila:

java.lang.RuntimeException: Error simulado

 at StackTraceEjemplo.metodo2(StackTraceEjemplo.java:15)

 at StackTraceEjemplo.metodo1(StackTraceEjemplo.java:11)

 at StackTraceEjemplo.main(StackTraceEjemplo.java:6)

