
Píldora Formativa: Recurrencia en Programación

1. ¿Qué es la Recurrencia?

La recurrencia es un concepto clave en programación que ocurre cuando una función se

llama a sí misma para resolver un problema dividiéndolo en subproblemas más

pequeños. Es como una tarea repetitiva donde cada paso depende del resultado del paso

anterior.

Ejemplo cotidiano: Imagínate que quieres abrir una serie de cajas apiladas. Para abrir

la última, primero necesitas abrir la caja de arriba. Este proceso se repite hasta llegar a

la última caja (el caso base).

2. Estructura Básica de una Función Recursiva

Una función recursiva tiene dos partes fundamentales:

1. Caso base: La condición que detiene la recursión.

2. Llamada recursiva: La parte donde la función se llama a sí misma con un

problema más pequeño.

Plantilla de código general:

public void funcionRecursiva(int parametro) {

 if (parametro <= 0) { // Caso base

 System.out.println("Fin de la recursión");

 }else{

 System.out.println("Llamada recursiva con: " + parametro);

 funcionRecursiva(parametro - 1); // Llamada recursiva

 }

}

3. Ejemplo Sencillo: Factorial de un Número

El factorial de un número (n!) se define como el producto de todos los enteros positivos

desde 1 hasta n.

Fórmula recursiva:

• Caso base: 1! = 1

• Relación recursiva: n! = n × (n-1)!

Código en Java:

public int factorial(int n) {

 if (n == 0) { // Caso base

 return 1;

 }

 return n * factorial(n - 1); // Llamada recursiva

}

Trazado para factorial(3):

1. factorial(3) = 3 × factorial(2)

2. factorial(2) = 2 × factorial(1)

3. factorial(1) = 1 × factorial(0)

4. factorial(0) = 1 (caso base)

Resultado final: 3 × 2 × 1 = 6.

4. ¿Por qué es útil la Recurrencia?

• Simplificación de problemas: Permite resolver problemas complejos

dividiéndolos en partes más pequeñas y manejables.

• Casos típicos: Cálculo de factoriales, Fibonacci, recorrer estructuras como

árboles o grafos, resolver rompecabezas como Torres de Hanoi.

5. Ejemplo Básico Adicional: Suma de un Arreglo

Problema: Diseñar una función recursiva que sume los elementos de un arreglo.

Código en Java:

public int suma(int[] arr, int n) {

 if (n == 0) { // Caso base

 return 0;

 }

 return arr[n - 1] + suma(arr, n - 1); // Llamada recursiva

}

Trazado para arr = {1, 2, 3}, n = 3:

1. suma({1, 2, 3}, 3) = 3 + suma({1, 2, 3}, 2)

2. suma({1, 2, 3}, 2) = 2 + suma({1, 2, 3}, 1)

3. suma({1, 2, 3}, 1) = 1 + suma({1, 2, 3}, 0)

4. suma({1, 2, 3}, 0) = 0 (caso base)

Resultado final: 1 + 2 + 3 = 6.

6. Errores Comunes al Usar Recurrencia

1. Olvidar el caso base: Esto genera una recurrencia infinita y eventualmente un

error de desbordamiento de pila (StackOverflowError).

2. No reducir el problema: Si el tamaño del problema no se reduce, la función

nunca llegará al caso base.

Ejemplo de error:

public void errorRecursivo(int n) {

 // No hay caso base

 errorRecursivo(n);

}

7. Ejemplo

Diseña una función recursiva que realice una cuenta regresiva desde un número dado

hasta 0, imprimiendo cada paso.

Ejemplo de ejecución: Entrada: 5 Salida:

5

4

3

2

1

0

Código inicial para resolver:

public void cuentaRegresiva(int n) {

 if (n < 0) { // Caso base

 System.out.println("Fin de la cuenta regresiva");

 }else{

 System.out.println(n);

 cuentaRegresiva(n - 1); // Llamada recursiva

 }

}

