Introduccidn a la Programacién Orientada a Objetos (POO)

La Programacion Orientada a Objetos (POO) es un paradigma de programacion que se
centra en organizar el codigo en torno a objetos que representan entidades del mundo
real o conceptual. A continuacion, exploraremos los conceptos fundamentales de este
enfoque y los beneficios que aporta al desarrollo de software.

1. ¢Qué es la Programacion Orientada a Objetos?

o Esun paradigma que permite estructurar el codigo en torno a clases y objetos.
o Los objetos combinan datos (atributos) y comportamientos (métodos) en una

sola entidad.
« Este enfoque refleja la forma en que percibimos y modelamos el mundo real,
facilitando la comprensién y mantenimiento del cddigo.

2. Conceptos bésicos
2.1 Clase

« Unaclase es un modelo o plantilla que define las propiedades (atributos) y
acciones (métodos) comunes a un conjunto de objetos.
o Ejemplo:

public class Coche {
// Atributos
String marca;
String color;

// Constructor

public Coche (String marca, String color) {
this.marca = marca;
this.color = color;

}

// Método
public void acelerar () {
System.out.println ("E1l coche estéd acelerando.");

}

2.2 Objeto

e Un objeto es una instancia de una clase. Representa un elemento especifico del
mundo real o conceptual definido por la clase.

e Ejemplo:
Coche miCoche = new Coche ("Toyota", "Rojo");
System.out.println ("Marca: " + miCoche.marca);
System.out.println ("Color: " + miCoche.color);

miCoche.acelerar();



2.3 Atributos

Son las propiedades que describen el estado o las caracteristicas de un objeto.
En el ejemplo anterior, marca Yy color son atributos de la clase coche.

2.4 Constructores

Los constructores son métodos especiales que se ejecutan cuando se crea un
objeto.

Tienen el mismo nombre que la clase y no tienen un tipo de retorno.

Se utilizan para inicializar los atributos de un objeto.

Ejemplo:

public class Persona {
private String nombre;
private int edad;

// Constructor
public Persona (String nombre, int edad) {

this.nombre = nombre;
this.edad = edad;

// Método para mostrar informacidn
public void mostrarInformacion() {

}

System.out.println ("Nombre: " + nombre + ", Edad: " + edad);

// Crear un objeto utilizando el constructor
Persona personal = new Persona("Ana", 30);
personal .mostrarInformacion () ;

2.5 Métodos

Son las acciones que un objeto puede realizar.

En el ejemplo, el método acelerar () representa una accion que un coche puede
realizar.

2.6 Encapsulamiento

Consiste en proteger los datos de un objeto para que solo puedan ser accedidos o
modificados a través de métodos especificos.

Para ello, los atributos se declaran como privados y se crean métodos publicos
Ilamados getters y setters para acceder a ellos.

Ventajas del encapsulamiento:

1.

2.

Proteccion de datos sensibles: Evita accesos indebidos o modificaciones
directas a los atributos.

Control sobre los datos: Permite validar o transformar los datos antes de
asignarlos a los atributos.

Mantenimiento facil: Los cambios en la implementacion interna de los
atributos no afectan a las partes del cddigo que los utilizan.



4. Reutilizacion y modularidad: Los métodos publicos pueden ser reutilizados en
diferentes contextos, proporcionando un punto centralizado para acceder o
modificar los datos.

Getters

e Son métodos que permiten obtener el valor de un atributo.
o Ejemplo:

public String getMarca () {
return marca;

}
Setters

o Son métodos que permiten modificar el valor de un atributo.
e Ejemplo:

public void setMarca (String marca) {
this.marca = marca;

}

Ejemplo completo de encapsulamiento:

public class Coche {
// Atributos privados
private String marca;
private String color;

// Constructor

public Coche (String marca, String color) ({
this.marca = marca;
this.color = color;

}

// Getter y Setter para marca
public String getMarca () {
return marca;

}

public void setMarca (String marca) {
this.marca = marca;

}

// Getter y Setter para color
public String getColor () {
return color;

}

public void setColor (String color) {
this.color = color;

}

// Método para mostrar informacidn
public void mostrarInformacion () {
System.out.println ("Marca: " + marca + ", Color: " + color);

}



}

// Uso de la clase encapsulada
public class Main {

public static void main(String[] args) {

Coche cochel = new Coche ("Toyota", "Rojo"):;

// Accediendo a los atributos mediante getters y setters
System.out.println ("Marca inicial: " + cochel.getMarca());
cochel.setColor ("Azul");

cochel.mostrarInformacion () ;

Con este enfoque, los atributos marca y color estan protegidos del acceso directo y
solo pueden ser manipulados de manera controlada mediante los métodos definidos.

Consiste en proteger los datos de un objeto para que s6lo puedan ser accedidos o
modificados a través de métodos especificos.

Para ello, los atributos se declaran como privados y se crean métodos publicos
Ilamados getters y setters para acceder a ellos.

3. Principios fundamentales de la POO

3.1 Abstraccion

Permite enfocarse en los aspectos relevantes de un objeto, ignorando los detalles
innecesarios.

Ejemplo: Un coche tiene muchas partes, pero s6lo nos interesa modelar marca 'y
color para una aplicacion especifica.

4. Beneficios de la POO

Reutilizacion del codigo: La organizacion en clases permite usar el mismo
cddigo en diferentes proyectos.

Mantenimiento sencillo: Los cambios se concentran en clases especificas.
Organizacion y modularidad: Los programas son mas faciles de entender y
modificar.

5. Ejemplo préctico completo

// Clase Persona
public class Persona {

private String nombre;
private int edad;

// Constructor
public Persona (String nombre, int edad) {



this.nombre = nombre;
this.edad = edad;
}

// Métodos
public void saludar () {
System.out.println ("Hola, mi nombre es " + nombre + ".");
}
public void cumplirAnios () {
edad++;
System.out.println ("Ahora tengo " + edad + " afios.");

}

// Programa principal
public class Main {
public static void main(String[] args) {
Persona personal = new Persona ("Juan", 25);
personal.saludar();
personal.cumplirAnios () ;



