
Introducción a la Programación Orientada a Objetos (POO)

La Programación Orientada a Objetos (POO) es un paradigma de programación que se

centra en organizar el código en torno a objetos que representan entidades del mundo

real o conceptual. A continuación, exploraremos los conceptos fundamentales de este

enfoque y los beneficios que aporta al desarrollo de software.

1. ¿Qué es la Programación Orientada a Objetos?

• Es un paradigma que permite estructurar el código en torno a clases y objetos.

• Los objetos combinan datos (atributos) y comportamientos (métodos) en una

sola entidad.

• Este enfoque refleja la forma en que percibimos y modelamos el mundo real,

facilitando la comprensión y mantenimiento del código.

2. Conceptos básicos

2.1 Clase

• Una clase es un modelo o plantilla que define las propiedades (atributos) y

acciones (métodos) comunes a un conjunto de objetos.

• Ejemplo:

public class Coche {

 // Atributos

 String marca;

 String color;

 // Constructor

 public Coche(String marca, String color) {

 this.marca = marca;

 this.color = color;

 }

 // Método

 public void acelerar() {

 System.out.println("El coche está acelerando.");

 }

}

2.2 Objeto

• Un objeto es una instancia de una clase. Representa un elemento específico del

mundo real o conceptual definido por la clase.

• Ejemplo:

Coche miCoche = new Coche("Toyota", "Rojo");

System.out.println("Marca: " + miCoche.marca);

System.out.println("Color: " + miCoche.color);

miCoche.acelerar();

2.3 Atributos

• Son las propiedades que describen el estado o las características de un objeto.

• En el ejemplo anterior, marca y color son atributos de la clase Coche.

2.4 Constructores

• Los constructores son métodos especiales que se ejecutan cuando se crea un

objeto.

• Tienen el mismo nombre que la clase y no tienen un tipo de retorno.

• Se utilizan para inicializar los atributos de un objeto.

• Ejemplo:

public class Persona {

 private String nombre;

 private int edad;

 // Constructor

 public Persona(String nombre, int edad) {

 this.nombre = nombre;

 this.edad = edad;

 }

 // Método para mostrar información

 public void mostrarInformacion() {

 System.out.println("Nombre: " + nombre + ", Edad: " + edad);

 }

}

// Crear un objeto utilizando el constructor

Persona persona1 = new Persona("Ana", 30);

persona1.mostrarInformacion();

2.5 Métodos

• Son las acciones que un objeto puede realizar.

• En el ejemplo, el método acelerar() representa una acción que un coche puede

realizar.

2.6 Encapsulamiento

• Consiste en proteger los datos de un objeto para que sólo puedan ser accedidos o

modificados a través de métodos específicos.

• Para ello, los atributos se declaran como privados y se crean métodos públicos

llamados getters y setters para acceder a ellos.

Ventajas del encapsulamiento:

1. Protección de datos sensibles: Evita accesos indebidos o modificaciones

directas a los atributos.

2. Control sobre los datos: Permite validar o transformar los datos antes de

asignarlos a los atributos.

3. Mantenimiento fácil: Los cambios en la implementación interna de los

atributos no afectan a las partes del código que los utilizan.

4. Reutilización y modularidad: Los métodos públicos pueden ser reutilizados en

diferentes contextos, proporcionando un punto centralizado para acceder o

modificar los datos.

Getters

• Son métodos que permiten obtener el valor de un atributo.

• Ejemplo:

public String getMarca() {

 return marca;

}

Setters

• Son métodos que permiten modificar el valor de un atributo.

• Ejemplo:

public void setMarca(String marca) {

 this.marca = marca;

}

Ejemplo completo de encapsulamiento:

public class Coche {

 // Atributos privados

 private String marca;

 private String color;

 // Constructor

 public Coche(String marca, String color) {

 this.marca = marca;

 this.color = color;

 }

 // Getter y Setter para marca

 public String getMarca() {

 return marca;

 }

 public void setMarca(String marca) {

 this.marca = marca;

 }

 // Getter y Setter para color

 public String getColor() {

 return color;

 }

 public void setColor(String color) {

 this.color = color;

 }

 // Método para mostrar información

 public void mostrarInformacion() {

 System.out.println("Marca: " + marca + ", Color: " + color);

 }

}

// Uso de la clase encapsulada

public class Main {

 public static void main(String[] args) {

 Coche coche1 = new Coche("Toyota", "Rojo");

 // Accediendo a los atributos mediante getters y setters

 System.out.println("Marca inicial: " + coche1.getMarca());

 coche1.setColor("Azul");

 coche1.mostrarInformacion();

 }

}

Con este enfoque, los atributos marca y color están protegidos del acceso directo y

sólo pueden ser manipulados de manera controlada mediante los métodos definidos.

• Consiste en proteger los datos de un objeto para que sólo puedan ser accedidos o

modificados a través de métodos específicos.

• Para ello, los atributos se declaran como privados y se crean métodos públicos

llamados getters y setters para acceder a ellos.

3. Principios fundamentales de la POO

3.1 Abstracción

• Permite enfocarse en los aspectos relevantes de un objeto, ignorando los detalles

innecesarios.

• Ejemplo: Un coche tiene muchas partes, pero sólo nos interesa modelar marca y

color para una aplicación específica.

4. Beneficios de la POO

• Reutilización del código: La organización en clases permite usar el mismo

código en diferentes proyectos.

• Mantenimiento sencillo: Los cambios se concentran en clases específicas.

• Organización y modularidad: Los programas son más fáciles de entender y

modificar.

5. Ejemplo práctico completo

// Clase Persona

public class Persona {

 private String nombre;

 private int edad;

 // Constructor

 public Persona(String nombre, int edad) {

 this.nombre = nombre;

 this.edad = edad;

 }

 // Métodos

 public void saludar() {

 System.out.println("Hola, mi nombre es " + nombre + ".");

 }

 public void cumplirAnios() {

 edad++;

 System.out.println("Ahora tengo " + edad + " años.");

 }

}

// Programa principal

public class Main {

 public static void main(String[] args) {

 Persona persona1 = new Persona("Juan", 25);

 persona1.saludar();

 persona1.cumplirAnios();

 }

}

